Skip to main content
Log in

Wave propagation analysis in functionally graded metal foam plates with nanopores

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the influence of the surface effect on wave propagation characteristics in functionally graded metal foam plates (FGMFPs) with nanopores is studied, where different porosity distribution patterns are taken in account. The surface effect between pore and matrix in FGMFP is considered by the Gurtin–Murdoch surface elasticity model. The plate is divided into finite thickness layers along the gradient, and each layer of porous material is homogenized using locally exact homogenization theory. On the basis of obtaining the effective modulus of each layer of porous material, the governing equations of the plates are obtained by Hamilton’s principle and different plate theories, upon which wave dispersion and phase velocity curves of FGMFP are obtained. The developed method is verified by comparing the wave dispersion curves against existing literature. Finally, the effects of different plate theories, porosity distribution, unit cell array, surface effect, pore radius and its distribution pattern, and graphene platelet weight fraction on the wave dispersion and phase velocity curves are systematically investigated. The results in this paper may provide guidance for the design of FGMFPs with nanopores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig.15

Similar content being viewed by others

References

  1. Kim, S., Lee, C.-W.: A review on manufacturing and application of open-cell metal foam. Procedia Mater. Sci. 4, 305–309 (2014)

    Article  Google Scholar 

  2. Singh, S., Bhatnagar, N.: A survey of fabrication and application of metallic foams (1925–2017). J. Porous Mater. 25(2), 537–554 (2017)

    Article  Google Scholar 

  3. Hangai, Y., Takahashi, K., Utsunomiya, T., Kitahara, S., Kuwazuru, O., Yoshikawa, N.: Fabrication of functionally graded aluminum foam using aluminum alloy die castings by friction stir processing. Mater. Sci. Eng. A 534, 716–719 (2012)

    Article  Google Scholar 

  4. Hassani, A., Habibolahzadeh, A., Bafti, H.: Production of graded aluminum foams via powder space holder technique. Mater. Des. 40, 510–515 (2012)

    Article  Google Scholar 

  5. Kitipornchai, S., Chen, D., Yang, J.: Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2017)

    Article  Google Scholar 

  6. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A., Bouremana, M.: Wave dispersion properties in imperfect sigmoid plates using various HSDTs. Steel Compos. Struct. 33, 699–716 (2019)

    Google Scholar 

  7. Yahia, S.A., Atmane, H.A., Houari, M.S.A., Tounsi, A.: Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct. Eng. Mech. 53(6), 1143–2116 (2015)

    Article  Google Scholar 

  8. Karami, B., Shahsavari, D., Li, L.: Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field. J. Therm. Stress 41, 483–499 (2017)

    Article  Google Scholar 

  9. Karami, B., Janghorban, M., Li, L.: On guided wave propagation in fully clamped porous functionally graded nanoplates. Acta Astronaut. 143, 380–390 (2018)

    Article  Google Scholar 

  10. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U., Al-Zahrani, M.M.: Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment. Compos. Struct. 269, 114030 (2021)

    Article  Google Scholar 

  11. Rahaeifard, M., Kahrobaiyan, M., Ahmadian, M.: Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference ASME (2009)

  12. Lee, Z., Ophus, C., Fischer, L., Nelson-Fitzpatrick, N., Westra, K., Evoy, S., Radmilovic, V., Dahmen, U., Mitlin, D.: Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology 17(12), 3063 (2006)

    Article  Google Scholar 

  13. Witvrouw, A., Mehta, A.: The use of functionally graded poly-SiGe layers for MEMS applications. In: Materials Science Forum. Trans. Tech. Publications 492–493, 255–260 (2005)

  14. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)

    Article  Google Scholar 

  15. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration Mech. An. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  17. Wang, G.N., Chen, Q., He, Z.L., Pindera, M.J.: Homogenized moduli and local stress fields of unidirectional nano-composites. Compos. B Eng. 138(1), 265–277 (2018)

    Article  Google Scholar 

  18. He, Z.L., Wang, G.N., Pindera, M.J.: Multiscale homogenization and localization of materials with hierarchical porous microstructures. Compos. Struct. 222, 110905 (2019)

    Article  Google Scholar 

  19. Chen, Q., Wang, G.N., Pindera, M.J.: Finite-volume homogenization and localization of nanoporous materials with cylindrical voids. Part 1: theory and validation. Eur. J. Mech. A-Solid 70, 141–155 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, M.Y., Yang, B., Huang, Y.L., Wang, G.N.: Effects of general imperfect interface/interphase on the in-plane conductivity of thermal composites. Int. J. Heat Mass Transf. 172, 121213 (2021)

    Article  Google Scholar 

  21. Abdelrahman, A.A., Mohamed, N.A., Eltaher, M.A.: Static bending of perforated nanobeams including surface energy and microstructure effects. Eng. Comput. 38, 415–435 (2022)

    Article  Google Scholar 

  22. Jin, Q., Ren, Y., Jiang, H., Li, L.: A higher-order size-dependent beam model for nonlinear mechanics of fluid-conveying FG nanotubes incorporating surface energy. Compos. Struct. 269, 114022 (2021)

    Article  Google Scholar 

  23. Hashemian, M., Foroutan, S., Toghraie, D.: Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects. Mech. Mater. 139, 103209 (2019)

    Article  Google Scholar 

  24. Song, M.T., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)

    Article  Google Scholar 

  25. Gao, W.L., Qin, Z.Y., Chu, F.L.: Wave propagation in functionally graded porous plates reinforced with graphene platelets. Aerosp. Sci. Technol. 102, 105860 (2020)

    Article  Google Scholar 

  26. Qian, L.F., Batra, R.C., Chen, L.M.: Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method. Compos. B Eng. 35(6–8), 685–697 (2004)

    Article  Google Scholar 

  27. Akbarzadeh, A.H., Abedini, A., Chen, Z.T.: Effect of micromechanical models on structural responses of functionally graded plates. Compos. Struct. 119, 598–609 (2015)

    Article  Google Scholar 

  28. Pindera, M.J., Khatam, H., Drago, A.S., Bansal, Y.: Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches. Compos. B Eng. 40(5), 349–378 (2009)

    Article  Google Scholar 

  29. Aboudi, J., Pindera, M.J., Arnold, S.M.: Higher-order theory for functionally graded materials. Compos. B 30(8), 777–832 (1999)

    Article  Google Scholar 

  30. Bansal, Y., Pindera, M.-J.: Efficient reformulation of the thermoelastic higher-order theory for functionally graded materials. J. Therm. Stresses 2(11–12), 1055–1092 (2003)

    Article  Google Scholar 

  31. Aboudi, J., Pindera, M.J., Arnold, S.M.: Higher-order theory for periodic multiphase materials with inelastic phases. Int. J. Plast. 19, 805–847 (2003)

    Article  MATH  Google Scholar 

  32. Cao, L.Q.: Iterated two-scale asymptotic method and numerical algorithm for the elastic structures of composite materials. Comput. Methods Appl. Mech. Engrg. 194(27–29), 2899–2926 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. He, Z.L.: Finite volume based asymptotic homogenization of viscoelastic unidirectional composites. Compos. Struct. 291, 115601 (2022)

    Article  Google Scholar 

  34. Ameen, M.M., Peerlings, R.H.J., Geers, M.G.D.: A quantitative assessment of the scale separation limits of classical and higher-order asymptotic homogenization. Eur. J. Mech. A Solids 71, 89–100 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, G.N., He, Z.L., Chen, Q.: The surface effects on solid and hollow nanowires under diametral loading. Appl. Math. Model 96, 697–718 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, G.N., Pindera, M.J.: Locally-exact homogenization theory for transversely isotropic unidirectional composites. Mech. Res. Commun. 78, 2–14 (2016)

    Article  Google Scholar 

  37. Drago, A.S., Pindera, M.J.: A locally exact homogenization theory for periodic microstructures with isotropic phases. J. Appl. Mech. 75(5), 051010 (2008)

    Article  Google Scholar 

  38. He, Z., Pindera, M.J.: Locally exact asymptotic homogenization of periodic materials under anti-plane shear loading. Eur. J. Mech. A/Solids 81, 103972 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. He, Z.L., Pindera, M.J.: Locally exact asymptotic homogenization of viscoelastic composites under anti-plane shear loading. Mech. Mater. 155, 103752 (2021)

    Article  Google Scholar 

  40. Wang, G.N., Pindera, M.J.: On boundary condition implementation via variational principles in elasticity-based homogenization. J. Appl. Mech. Oct. 83, 101008 (2016)

    Article  Google Scholar 

  41. Magnucki, K., Stasiewicz, P.: Elastic buckling of a porous beam. J. Theor. Appl. Mech. 42, 859–868 (2004)

    MATH  Google Scholar 

  42. Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev–Ritz method. Compos. Struct. 193, 281–294 (2018)

    Article  Google Scholar 

  43. Nishiyabu, K., Matsuzaki, S., Okubo, K., Ishida, M., Tanaka, S.: Porous graded materials by stacked metal powder hot-press moulding. Mater. Sci. Forum 492–493, 765–770 (2005)

    Article  Google Scholar 

  44. Hangai, Y., Saito, K., Utsunomiya, T., et al.: Compression properties of Al/Al–Si–Cu alloy functionally graded aluminum foam fabricated by friction stir processing route. Metall. Trans. 54(3), 405–408 (2013)

    Google Scholar 

  45. He, S.Y., Zhang, Y., Dai, G., Jiang, J.Q.: Preparation of density-graded aluminum foam. Mater. Sci. Eng. A 618, 496–499 (2014)

    Article  Google Scholar 

  46. Zhao, Y., Ma, C.Y., Xin, D.B., Sun, M.: Dynamic mechanical properties of closed-cell aluminum foams with uniform and graded densities. J. Mater. Res. 35, 2575–2586 (2020)

    Article  Google Scholar 

  47. Peerlings, R.H.J., Fleck, N.A.: Computational evaluation of strain gradient elasticity constants. Int. J. Multiscale Comput. 2(4), 599–619 (2004)

    Article  Google Scholar 

  48. Yin, S., He, Z., Pindera, M.J.: A new hybrid homogenization theory for periodic composites with random fiber distributions. Compos. Struct. 269, 113997 (2021)

    Article  Google Scholar 

  49. Anthoine, A.: Second-order homogenisation of functionally graded materials. Int. J. Solids Struct. 47(11–12), 1477–1489 (2010)

    Article  MATH  Google Scholar 

  50. Jiang, Y., Li, L., Hu, Y.: A nonlocal surface theory for surface-bulk interactions and its application to mechanics of nanobeams. Int. J. Eng. Sci. 172, 103624 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  51. Li, L., Lin, R., Ng, T.Y.: A fractional nonlocal time-space viscoelasticity theory and its applications in structural dynamics. Appl. Math. Model. 84, 116–136 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

G.W. is supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (No. 2022C01143); the National Key Research and Development Program of China (No. 2020YFA0711700); National Natural Science Foundation of China (No. 12002303). Z.H. is supported by the Fundamental Research Funds for the Central Universities (No. 531118010752).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhelong He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

By applying the G–M interface conditions (Eqs. (35)) and displacement continuity conditions, the relationship between the unknown coefficients \(F_{nj}^{{}}\) and \(G_{nj}^{{}}\)(j = 1, 2, 3, 4) in the fiber phase and matrix phase is obtained, for n = 0,

$$\left[ {\begin{array}{*{20}l} {F_{{{01}}} } \\ {F_{{{02}}} } \\ \end{array} } \right]^{\left( m \right)} = \left[ {\begin{array}{*{20}l} {b_{{{01}}} + b^{\prime}_{{{01}}} } \\ {b_{{{02}}} + b^{\prime}_{{{01}}} } \\ \end{array} } \right]F_{{{01}}}^{\left( r \right)} + \left[ {\begin{array}{*{20}l} {c_{{{01}}} + c^{\prime}_{{{01}}} } \\ {c_{{{02}}} + c^{\prime}_{{{01}}} } \\ \end{array} } \right] {\mathbf{\bar{\varepsilon }}}_{{{33}}} + \left[ {\begin{array}{*{20}l} {d_{{{01}}} + d^{\prime}_{{{01}}} } \\ {d_{{{02}}} + d^{\prime}_{{{01}}} } \\ \end{array} } \right]\left( {{\mathbf{\bar{\varepsilon }}}_{{{11}}} + {\mathbf{\bar{\varepsilon }}}_{{{22}}} } \right),$$
(30)

where \(b_{01} = \frac{{\left( {C_{11}^{\left( r \right)} + C_{12}^{\left( r \right)} } \right) + \left( {C_{11}^{\left( m \right)} + C_{12}^{\left( m \right)} } \right)}}{{2C_{12}^{\left( m \right)} }},c_{01} = \frac{{\left( {C_{13}^{\left( r \right)} - C_{13}^{\left( m \right)} } \right)}}{{2C_{11}^{\left( m \right)} }},d_{01} = - \frac{1}{2}b_{02} ,c_{02} = - c_{01} ,d_{02} = - d_{01} ,d_{01}^{\prime } = \frac{1}{2}d_{01}^{\prime }\),\(b_{02} = \frac{{\left( {C_{11}^{\left( r \right)} + C_{12}^{\left( r \right)} } \right) - \left( {C_{11}^{\left( m \right)} + C_{12}^{\left( m \right)} } \right)}}{{2C_{12}^{\left( m \right)} }},d_{01}^{\prime } = - \frac{{s^{\prime } }}{{C_{11}^{\left( m \right)} }},c_{01}^{\prime } = - \frac{{\lambda_{s} }}{{2C_{11}^{\left( m \right)} r}},d_{02}^{\prime } = - d_{01}^{\prime } ,c_{02}^{\prime } = - c_{01}^{\prime } ,d_{02}^{\prime } = - d_{01}^{\prime } ,s^{\prime } = - \frac{{\left( {\lambda_{s} + 2\mu_{s} } \right)}}{r}\).

For \(n \ge {2},\)

$$\begin{aligned} {\mathbf{A}}_{n}^{\left( m \right)} F_{n}^{\left( m \right)} & = \left( {{\mathbf{A}}_{n}^{\left( r \right)} + {\mathbf{A}}_{0n}^{\prime \left( r \right)} } \right){\mathbf{F}}_{n}^{\left( r \right)} + \delta_{n2} \left( {{\mathbf{A}}_{0}^{{}} + {\mathbf{A}}_{0}^{\prime } } \right)\left( {\overline{\varepsilon }_{11} - \overline{\varepsilon }_{22} } \right), \\ {\mathbf{A}}_{n}^{\left( m \right)} G_{n}^{\left( m \right)} & = \left( {{\mathbf{A}}_{n}^{\left( r \right)} + {\mathbf{A}}_{n}^{\left( r \right)} } \right){\mathbf{G}}_{n}^{\left( r \right)} + \delta_{n2} \left( {{\mathbf{A}}_{0}^{{}} + {\mathbf{A}}_{0}^{{}} } \right){\mathbf{2}}\overline{\varepsilon }_{12} ,\\ \end{aligned}$$
(31)

where \({\mathbf{F}}_{n}^{\left( m \right)} = \left[ {F_{{n{1}}}^{\left( m \right)} ,F_{{n{2}}}^{\left( m \right)} ,F_{{n{3}}}^{\left( m \right)} ,F_{{n{4}}}^{\left( m \right)} } \right]^{{\text{T}}}\),\({\mathbf{G}}_{n}^{\left( m \right)} = \left[ {G_{{n{1}}}^{\left( m \right)} ,G_{{n{2}}}^{\left( m \right)} ,G_{{n{3}}}^{\left( m \right)} ,G_{{n{4}}}^{\left( m \right)} } \right]^{{\text{T}}}\)\({\mathbf{F}}_{n}^{\left( r \right)} = \left[ {\begin{array}{*{20}l} {F_{{n{1}}}^{\left( r \right)} } & {F_{{n{2}}}^{\left( r \right)} } \\ \end{array} } \right]^{{\text{T}}}\),\({\mathbf{G}}_{n}^{\left( r \right)} = \left[ {\begin{array}{*{20}l} {G_{{n{1}}}^{\left( r \right)} } & {G_{{n{2}}}^{\left( r \right)} } \\ \end{array} } \right]^{{\text{T}}}\), and the superscripts r and m represent the ring and matrix phase, respectively.

$${\mathbf{A}}_{n}^{\left( m \right)} = \left[ {\begin{array}{*{20}l} {1} &\quad {1} &\quad {1} &\quad {1} \\ {\beta_{{n{1}}} } & \quad {\beta_{{n{2}}} } &\quad {\beta_{{n{3}}} } &\quad {\beta_{{n{4}}} } \\ {P_{{n{1}}} } &\quad {P_{{n{2}}} } &\quad {P_{{n{3}}} } &\quad {P_{{n{4}}} } \\ {R_{{n{1}}} } &\quad {R_{{n{2}}} } &\quad {R_{{n{3}}} } &\quad {R_{{n{4}}} } \\ \end{array} } \right]^{\left( m \right)} ,{\mathbf{A}}_{n}^{\left( f \right)} = \left[ {\begin{array}{*{20}l} {1} &\quad {1} \\ {\beta_{{n{1}}} } &\quad {\beta_{{n{2}}} } \\ {P_{{n{1}}} } &\quad {P_{{n{2}}} } \\ {R_{{n{1}}} } &\quad {R_{{n{2}}} } \\ \end{array} } \right],{\mathbf{A^{\prime}}}_{n}^{\left( f \right)} = \left[ {\begin{array}{*{20}l} 0 &\quad 0 \\ 0 &\quad 0 \\ {{{I_{{n{1}}}^{\left( r \right)} } \mathord{\left/ {\vphantom {{I_{{n{1}}}^{\left( r \right)} } r}} \right. \kern-\nulldelimiterspace} r}} &\quad {{{I_{{n{2}}}^{\left( r \right)} } \mathord{\left/ {\vphantom {{I_{{n{2}}}^{\left( r \right)} } r}} \right. \kern-\nulldelimiterspace} r}} \\ {{{nI_{{n{1}}}^{\left( r \right)} } \mathord{\left/ {\vphantom {{nI_{{n{1}}}^{\left( r \right)} } r}} \right. \kern-\nulldelimiterspace} r}} &\quad {{{nI_{{n{2}}}^{\left( r \right)} } \mathord{\left/ {\vphantom {{nI_{{n{2}}}^{\left( r \right)} } r}} \right. \kern-\nulldelimiterspace} r}} \\ \end{array} } \right],$$
$${\mathbf{A}}_{0}^{{}} = \frac{{1}}{{2}}\left[ {\begin{array}{*{20}l} 0 &\quad 0 &\quad {C_{{{11}}}^{\left( r \right)} - C_{{{12}}}^{\left( r \right)} - C_{{{11}}}^{\left( m \right)} + C_{{{12}}}^{\left( m \right)} } &\quad {C_{{{11}}}^{\left( r \right)} - C_{{{12}}}^{\left( r \right)} - C_{{{11}}}^{\left( m \right)} + C_{{{12}}}^{\left( m \right)} } \\ \end{array} } \right]^{T} ,{\mathbf{A^{\prime}}}_{0}^{{}} = \left[ {\begin{array}{*{20}l} 0 &\quad 0 &\quad {\frac{{s^{\prime}}}{{2}}} &\quad {s^{\prime}} \\ \end{array} } \right]^{T},$$
(32)

where \(I_{{n{1}}}^{\left( r \right)} = \left( {\lambda_{s} + \mu_{s} } \right)\left( {{1} + n\beta_{nj}^{\left( r \right)} } \right)\).

Appendix 2

By substituting Eq. (19) and Eq. (20) into Eq. (23), the corresponding governing equation based on different plate theories is as follows

2.1 GPT

$$\begin{aligned} & A_{11} \frac{{\partial^{2} u_{0} }}{{\partial x^{2} }} + A_{66} \frac{{\partial^{2} u_{0} }}{{\partial y^{2} }} + \left( {A_{12} + A_{66} } \right)\frac{{\partial^{2} v_{0} }}{\partial x\partial y} - B_{11} \frac{{\partial^{3} v_{0} }}{{\partial x^{3} }} - \left( {B_{12} + 2B_{66} } \right)\frac{{\partial^{3} w_{0} }}{{\partial x\partial y^{2} }} = I_{0} \ddot{u}_{0} - I_{1} \frac{{\partial \ddot{w}_{0} }}{\partial x} \\ & A_{22} \frac{{\partial^{2} v_{0} }}{{\partial y^{2} }} + A_{66} \frac{{\partial^{2} v_{0} }}{{\partial x^{2} }} + \left( {A_{12} + A_{66} } \right)\frac{{\partial^{2} u_{0} }}{\partial x\partial y} - B_{22} \frac{{\partial^{3} w_{0} }}{{\partial y^{3} }} - \left( {B_{12} + 2B_{66} } \right)\frac{{\partial^{3} w_{0} }}{{\partial y\partial x^{2} }} = I_{0} \ddot{v}_{0} - I_{1} \frac{{\partial \ddot{w}_{0} }}{\partial y} \\ \end{aligned}$$
(33)
$$\begin{aligned} & B_{11} \frac{{\partial^{3} u_{0} }}{{\partial x^{3} }} + \left( {B_{12} + 2B_{66} } \right)\frac{{\partial^{3} u_{0} }}{{\partial x\partial y^{2} }} + \left( {B_{12} + 2B_{66} } \right)\frac{{\partial^{3} v_{0} }}{{\partial y\partial x^{2} }} + B_{22} \frac{{\partial^{3} v_{0} }}{{\partial y^{3} }} - D_{11} \frac{{\partial^{4} w_{0} }}{{\partial x^{4} }} - 2\left( {D_{12} + 2D_{66} } \right)\frac{{\partial^{4} w_{0} }}{{\partial y^{2} \partial x^{2} }} \\ & \quad - D_{22} \frac{{\partial^{4} w_{0} }}{{\partial y^{4} }} = I_{0} \ddot{w}_{0} + I_{1} \left( {\frac{{\partial \ddot{u}_{0} }}{\partial x} + \frac{{\partial \ddot{v}_{0} }}{\partial y}} \right) - I_{2} \left( {\frac{{\partial^{2} \ddot{w}_{0} }}{{\partial x^{2} }} + \frac{{\partial^{2} \ddot{w}_{0} }}{{\partial y^{2} }}} \right) \\ \end{aligned}$$

2.2 FSDT

$$A_{{{22}}} \frac{{\partial^{{2}} v_{0} }}{{\partial y^{{2}} }} + A_{{{66}}} \frac{{\partial^{{2}} v_{0} }}{{\partial x^{{2}} }} + \left( {A_{{{12}}} + A_{{{66}}} } \right)\frac{{\partial^{{2}} u_{0} }}{\partial x\partial y} - B_{{{22}}} \frac{{\partial^{{3}} w_{0} }}{{\partial y^{{3}} }} - \left( {B_{{{12}}} + {2}B_{{{66}}} } \right)\frac{{\partial^{{3}} w_{0} }}{{\partial y\partial x^{{2}} }} = I_{0} \ddot{v}_{0} + I_{{1}} \frac{{\partial^{{2}} \phi_{y} }}{{\partial t^{{2}} }}$$
$$A_{{{22}}} \frac{{\partial^{{2}} v_{0} }}{{\partial y^{{2}} }} + A_{{{66}}} \frac{{\partial^{{2}} v_{0} }}{{\partial x^{{2}} }} + \left( {A_{{{12}}} + A_{{{66}}} } \right)\frac{{\partial^{{2}} u_{0} }}{\partial x\partial y} - B_{{{22}}} \frac{{\partial^{{3}} w_{0} }}{{\partial y^{{3}} }} - \left( {B_{{{12}}} + {2}B_{{{66}}} } \right)\frac{{\partial^{{3}} w_{0} }}{{\partial y\partial x^{{2}} }} = I_{0} \ddot{v}_{0} + I_{{1}} \frac{{\partial^{{2}} \phi_{y} }}{{\partial t^{{2}} }}$$
$$\begin{aligned} & \kappa A_{44} \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }} + \kappa A_{55} \frac{{\partial^{2} w_{0} }}{{\partial y^{2} }}\kappa A_{44} \frac{{\partial \phi_{x} }}{\partial x} + \kappa A_{55} \frac{{\partial \phi_{y} }}{\partial y} = I_{0} \ddot{w}_{0} \\ & B_{11} \frac{{\partial^{2} u_{0} }}{{\partial x^{2} }} + B_{66} \frac{{\partial^{2} u_{0} }}{{\partial y^{2} }} + \left( {B_{12} + B_{66} } \right)\frac{{\partial^{2} v_{0} }}{\partial x\partial y} + D_{11} \frac{{\partial^{2} \phi_{x} }}{{\partial x^{2} }} + D_{66} \frac{{\partial^{2} \phi_{x} }}{{\partial y^{2} }} + \left( {D_{12} + D_{66} } \right)\frac{{\partial^{2} \phi_{y} }}{\partial x\partial y} \\ & \quad - \kappa A_{44} \frac{{\partial w_{0} }}{\partial x} - \kappa A_{44} \phi_{x} = I_{1} \ddot{u}_{0} + I_{2} \frac{{\partial^{2} \phi_{x} }}{{\partial t^{2} }} \\ \end{aligned}$$
(B2)
$$\begin{aligned} & B_{22} \frac{{\partial^{2} v_{0} }}{{\partial y^{2} }} + B_{66} \frac{{\partial^{2} v_{0} }}{{\partial x^{2} }} + \left( {B_{12} + B_{66} } \right)\frac{{\partial^{2} u_{0} }}{\partial x\partial y} + D_{22} \frac{{\partial^{2} \phi_{y} }}{{\partial y^{2} }} + D_{66} \frac{{\partial^{2} \phi_{y} }}{{\partial x^{2} }} + \left( {D_{12} + D_{66} } \right)\frac{{\partial^{2} \phi_{x} }}{\partial x\partial y} - \kappa A_{55} \frac{{\partial w_{0} }}{\partial y} \\ & \quad - \kappa A_{44} \phi_{y} = I_{1} \ddot{v}_{0} + I_{2} \frac{{\partial^{2} \phi_{y} }}{{\partial t^{2} }} \\ \end{aligned}$$

2.3 TSDT

$$\begin{aligned} & A_{11} \frac{{\partial^{2} u_{0} }}{{\partial x^{2} }} + A_{66} \frac{{\partial^{2} u_{0} }}{{\partial y^{2} }} + \left( {A_{12} + A_{66} } \right)\frac{{\partial^{2} v_{0} }}{\partial x\partial y} - B_{11} \frac{{\partial^{3} w_{b} }}{{\partial x^{3} }} - \left( {B_{12} + 2B_{66} } \right)\frac{{\partial^{3} w_{b} }}{{\partial x\partial y^{2} }} \\ & \quad - \left( {B_{12}^{s} + 2B_{66}^{s} } \right)\frac{{\partial^{3} w_{s} }}{{\partial x\partial y^{2} }} - B_{11}^{s} \frac{{\partial^{3} w_{s} }}{{\partial x^{3} }} = I_{0} \ddot{u}_{0} - I_{1} \frac{{\partial \ddot{w}_{b} }}{\partial x} - J_{1} \frac{{\partial \ddot{w}_{s} }}{\partial x} \\ \end{aligned}$$
$$\begin{aligned} & A_{22} \frac{{\partial^{2} v_{0} }}{{\partial y^{2} }} + A_{66} \frac{{\partial^{2} v_{0} }}{{\partial x^{2} }} + \left( {A_{12} + A_{66} } \right)\frac{{\partial^{2} v_{0} }}{\partial x\partial y} - B_{22} \frac{{\partial^{3} w_{b} }}{{\partial y^{3} }} - \left( {B_{12} + 2B_{66} } \right)\frac{{\partial^{3} w_{b} }}{{\partial x^{2} \partial y}} \\ & \quad - \left( {B_{12}^{s} + 2B_{66}^{s} } \right)\frac{{\partial^{3} w_{s} }}{{\partial x^{2} \partial y}} - B_{22}^{s} \frac{{\partial^{3} w_{s} }}{{\partial y^{3} }} = I_{0} \ddot{v}_{0} - I_{1} \frac{{\partial \ddot{w}_{b} }}{\partial x} - J_{1} \frac{{\partial \ddot{w}_{s} }}{\partial y} \\ \end{aligned}$$
(35)
$$\begin{aligned} & B_{11} \frac{{\partial^{3} u_{0} }}{{\partial x^{3} }} + \left( {B_{12} + 2B_{66} } \right)\frac{{\partial^{2} u_{0} }}{{\partial x\partial y^{2} }} + \left( {B_{12} + 2B_{66} } \right)\frac{{\partial^{2} v_{0} }}{{\partial^{2} x\partial y}} + B_{22} \frac{{\partial^{3} v_{0} }}{{\partial y^{3} }} - D_{11} \frac{{\partial^{4} w_{b} }}{{\partial x^{4} }} \\ & \quad - 2\left( {D_{12} + 2D_{66} } \right)\frac{{\partial^{4} w_{b} }}{{\partial y^{2} \partial x^{2} }} - D_{22} \frac{{\partial^{4} w_{b} }}{{\partial y^{4} }} - D_{11}^{s} \frac{{\partial^{4} w_{s} }}{{\partial x^{4} }} - 2\left( {D_{12}^{s} + 2D_{66}^{s} } \right)\frac{{\partial^{4} w_{s} }}{{\partial y^{2} \partial x^{2} }} \\ & \quad - D_{22}^{s} \frac{{\partial^{4} w_{s} }}{{\partial y^{4} }} = I_{0} \left( {\ddot{w}_{s} + \ddot{w}_{b} } \right) - I_{1} \left( {\frac{{\partial \ddot{u}_{0} }}{\partial x} + \frac{{\partial \ddot{v}_{0} }}{\partial y}} \right) - I_{2} \nabla^{2} \ddot{w}_{b} - J_{2} \nabla^{2} \ddot{w}_{s} \\ \end{aligned}$$
$$\begin{aligned} & B_{11}^{s} \frac{{\partial^{3} u_{0} }}{{\partial x^{3} }} + \left( {B_{12}^{s} + 2B_{66}^{s} } \right)\frac{{\partial^{2} u_{0} }}{{\partial x\partial y^{2} }} + \left( {B_{12}^{s} + 2B_{66}^{s} } \right)\frac{{\partial^{2} v_{0} }}{{\partial x^{2} \partial y}} + B_{22}^{s} \frac{{\partial^{3} v_{0} }}{{\partial y^{3} }} - D_{11}^{s} \frac{{\partial^{4} w_{b} }}{{\partial x^{4} }} \\ & \quad - 2\left( {D_{12}^{s} + 2D_{66}^{s} } \right)\frac{{\partial^{4} w_{b} }}{{\partial y^{2} \partial x^{2} }} - D_{22}^{s} \frac{{\partial^{4} w_{b} }}{{\partial y^{4} }} - H_{11}^{s} \frac{{\partial^{4} w_{s} }}{{\partial x^{4} }} - 2\left( {H_{12}^{s} + 2H_{66}^{s} } \right)\frac{{\partial^{4} w_{s} }}{{\partial y^{2} \partial x^{2} }} \\ & \quad - H_{22}^{s} \frac{{\partial^{4} w_{s} }}{{\partial y^{4} }} + A_{55}^{s} \frac{{\partial^{2} w_{s} }}{{\partial x^{2} }} + A_{44}^{s} \frac{{\partial^{2} w_{s} }}{{\partial y^{2} }} = I_{0} \left( {\ddot{w}_{b} + \ddot{w}_{s} } \right) + J_{1} \left( {\frac{{\partial \ddot{u}_{0} }}{\partial x} + \frac{{\partial \ddot{v}_{0} }}{\partial y}} \right) - J_{2} \nabla^{2} \ddot{w}_{b} - K_{2} \nabla^{2} \ddot{w}_{s} \\ \end{aligned}$$

Appendix 3

The simplified stiffness and mass matrices \(\left[ {\mathbf{K}} \right]_{i}\) and \(\left[ {\mathbf{M}} \right]_{i}\) (i = GPT, FSDT, TSDT) read:

$$\begin{aligned} \left[ {\mathbf{K}} \right]_{{{\text{GPT}}}} & = \left[ {\begin{array}{*{20}l} {k_{{{11}}} } &\quad {k_{{{12}}} } &\quad {k_{{{13}}} } \\ {k_{{{12}}} } &\quad {k_{{{11}}} } &\quad {k_{{{13}}} } \\ { - k_{{{13}}} } &\quad { - k_{{{13}}} } &\quad {k_{{{33}}} } \\ \end{array} } \right],\left[ {\mathbf{M}} \right]_{{{\text{GPT}}}} = \left[ {\begin{array}{*{20}l} {m_{{{11}}} } &\quad {0} &\quad {m_{{{13}}} } \\ {0} &\quad {m_{{{11}}} } &\quad {m_{{{13}}} } \\ { - m_{{{13}}} } &\quad { - m_{{{13}}} } &\quad {m_{{{33}}} } \\ \end{array} } \right] \\ \left[ {\mathbf{K}} \right]_{{{\text{FSDT}}}} & = \left[ {\begin{array}{*{20}l} {k_{{{11}}} } &\quad {k_{{{12}}} } &\quad {0} &\quad {k_{{{14}}}^{F} } &\quad {k_{{{14}}}^{F} } \\ {k_{{{12}}} } &\quad {k_{{{11}}} } &\quad {0} &\quad {k_{{{14}}}^{F} } &\quad {k_{{{14}}}^{F} } \\ {0} &\quad {0} &\quad {k_{{{33}}}^{F} } &\quad {k_{{{34}}}^{F} } &\quad {k_{{{34}}}^{F} } \\ {k_{{{14}}}^{F} } &\quad {k_{{{14}}}^{F} } &\quad { - k_{{{34}}}^{F} } &\quad {k_{{{44}}}^{F} } &\quad {k_{{{45}}} } \\ {k_{{{14}}}^{F} } &\quad {k_{{{14}}}^{F} } &\quad { - k_{{{34}}}^{F} } &\quad {k_{{{45}}} } &\quad {k_{{{44}}}^{F} } \\ \end{array} } \right],\left[ {\mathbf{M}} \right]_{{{\text{GPT}}}} = \left[ {\begin{array}{*{20}l} {m_{{{11}}} } &\quad {0} &\quad {0} &\quad {m_{{{14}}}^{F} } &\quad {0} \\ {0} &\quad {m_{{{11}}} } &\quad {0} &\quad {0} &\quad {m_{{{14}}}^{F} } \\ {0} &\quad {0} &\quad {m_{{{33}}} } &\quad {0} &\quad {0} \\ {m_{{{14}}}^{F} } &\quad {0} &\quad {0} &\quad {m_{{{44}}}^{F} } &\quad {0} \\ {0} &\quad {m_{{{14}}}^{F} } &\quad {0} &\quad {0} &\quad {m_{{{44}}}^{F} } \\ \end{array} } \right] \\ \left[ {\mathbf{K}} \right]_{{{\text{GPT}}}} & = \left[ {\begin{array}{*{20}l} {k_{{{11}}} } &\quad {k_{{{12}}} } &\quad {k_{{{13}}} } &\quad {k_{{{14}}}^{T} } \\ {k_{{{12}}} } &\quad {k_{{{11}}} } &\quad {k_{{{13}}} } &\quad {k_{{{14}}}^{T} } \\ { - k_{{{13}}} } &\quad { - k_{{{13}}} } &\quad {k_{{{33}}} } &\quad {k_{{{34}}}^{T} } \\ { - k_{{{14}}}^{T} } &\quad { - k_{{{14}}}^{T} } &\quad {k_{{{34}}}^{T} } &\quad {k_{{{44}}}^{T} } \\ \end{array} } \right],\left[ {\mathbf{M}} \right]_{{{\text{GPT}}}} = \left[ {\begin{array}{*{20}l} {m_{{{11}}} } &\quad {0} &\quad {m_{{{13}}} } &\quad {m_{{{14}}}^{T} } \\ {0} &\quad {m_{{{11}}} } &\quad {m_{{{23}}} } &\quad {m_{{{14}}}^{T} } \\ { - m_{{{13}}} } &\quad { - m_{{{13}}} } &\quad {m_{{{33}}} } &\quad {m_{{{34}}}^{{}} } \\ { - m_{{{14}}}^{T} } &\quad { - m_{{{14}}}^{T} } &\quad {m_{{{34}}}^{{}} } &\quad {m_{{{44}}}^{T} } \\ \end{array} } \right] \\ \end{aligned}$$
(36)
$$\begin{aligned} k_{11} & = - k^{2} \left( {A_{11} + A_{66} } \right),k_{12} = - k^{2} \left( {A_{12} + A_{66} } \right),k_{13} = - ik^{3} \left( {B_{11} + B_{12} + 2B_{66} } \right) \\ k_{33} & = - k^{4} \left( {D_{11} + D_{22} + 2D_{12} + 4D_{66} } \right),k_{14}^{F} = - k^{2} \left( {B_{11} + B_{66} } \right),k_{33}^{F} = - \kappa k^{2} \left( {A_{44} + A_{55} } \right) \\ k_{34}^{F} & = i\kappa kA_{55} ,k_{44}^{F} = - \left( {k^{2} D_{66} + k^{2} D_{11} + \kappa A_{44} } \right),k_{45} = - k^{2} \left( {D_{12} + D_{66} } \right) \\ k_{14}^{T} & = - ik^{3} \left( {B_{11}^{s} + B_{12}^{s} + 2B_{66}^{s} } \right),k_{34}^{T} = - k^{4} \left( {D_{11}^{s} + D_{22}^{s} + 2D_{12}^{s} + 4D_{66}^{s} } \right) \\ k_{24}^{T} & = k_{14}^{T} ,k_{44}^{T} = - \left( {k^{4} H_{11}^{s} + k^{4} H_{22}^{s} + 2k^{4} \left( {H_{12}^{s} + H_{66}^{s} } \right) + \kappa k^{2} \left( {A_{44}^{s} + A_{55}^{s} } \right)} \right) \\ m_{11} & = - I_{0} ,m_{13} = iI_{1} k,m_{33} = - I_{0} - 2k^{2} I_{2} ,m_{14}^{F} = - I_{1} ,m_{33}^{F} = - I_{0} ,m_{44}^{F} = - I_{2} \\ m_{14}^{T} & = iJ_{1} k,m_{34} = - I_{0} - 2k^{2} J_{2} ,m_{44}^{T} = - I_{0} - 2k^{2} K_{2} \\ \end{aligned}$$
(37)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Wang, G., Liu, J. et al. Wave propagation analysis in functionally graded metal foam plates with nanopores. Acta Mech 234, 1733–1755 (2023). https://doi.org/10.1007/s00707-022-03442-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03442-w

Navigation