Skip to main content
Log in

Geometrical large deformation-dependent numerical dynamic deflection prediction of cutout borne composite structure under thermomechanical loadings and experimental verification

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The geometrical nonlinear dynamic deflections of cutout abided laminated plate/shell panels under thermomechanical loading are being analyzed computationally. The curved structure has been formulated mathematically using higher-order displacement variables. The panel geometrical large deformation under the combined thermomechanical loading has been introduced in the current mathematical model via two strain–displacement relationships (Green and von Kármán). The structural governing equation of motion under the transient loading is converted to its weak form and the algebraic equation sets by taking the advent of the nonlinear finite element discretization technique. Finally, a generic computer program has been prepared (in MATLAB) for the nonlinear solution of a cutout-borne composite structure by adjoining two established techniques (Newmark’s constant acceleration integration scheme and the direct iterative technique). The nonlinear dynamic numerical solution consistency is checked by performing a few convergence tests (time-steps and element densities). In addition, repetitive computations have also been performed to verify the current solution’s accuracy level. The numerical solution has also been compared further with the in-house experimental data from the laboratory-scale test rig. Subsequently, the current solution technique has been utilized to solve the cutout-related parameters (size, shape, position, and orientation), geometrical structure input, and loading conditions. The solutions show applicability with and without the composite’s temperature-dependent elastic properties, including the variable nonlinear strain effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Reddy, J.N., Chandrashekhara, K.: Geometrically non-linear transient analysis of laminated, doubly curved shells. Int. J. Non. Linear Mech. 20, 79–90 (1985). https://doi.org/10.1016/0020-7462(85)90002-2

    Article  MATH  Google Scholar 

  2. Kundu, C.K., Sinha, P.K.: Nonlinear transient analysis of laminated composite shells. J. Reinf. Plast. Compos. 25, 1129–1147 (2006). https://doi.org/10.1177/0731684406065196

    Article  Google Scholar 

  3. Naidu, N.V.S., Sinha, P.K.: Nonlinear transient analysis of laminated composite shells in hygrothermal environments. Compos. Struct. 72, 280–288 (2006). https://doi.org/10.1016/j.compstruct.2004.12.001

    Article  Google Scholar 

  4. Szekrényes, A.: Improved analysis of unidirectional composite delamination specimens. Mech. Mater. 39, 953–974 (2007). https://doi.org/10.1016/j.mechmat.2007.04.002

    Article  Google Scholar 

  5. Li, R., Kardomateas, G.A., Simitses, G.J.: Nonlinear response of a shallow sandwich shell with compressible core to blast loading. J. Appl. Mech. 75, 61010–61023 (2008). https://doi.org/10.1115/1.2937154

    Article  Google Scholar 

  6. Roque, C.M.C.C., Ferreira, A.J.M.M., Neves, A.M.A.A., Soares, C.M.M.M., Reddy, J.N., Jorge, R.M.N.N.: Transient analysis of composite and sandwich plates by radial basis functions. J. Sandw. Struct. Mater. 13, 681–704 (2011). https://doi.org/10.1177/1099636211419132

    Article  Google Scholar 

  7. Khante, S.N., Rode, V., Kant, T.: Nonlinear transient dynamic response of damped plates using a higher order shear deformation theory. Nonlinear Dyn. 47, 389–403 (2007). https://doi.org/10.1007/s11071-006-9038-8

    Article  MATH  Google Scholar 

  8. Valizadeh, N., Ghorashi, S.S., Yousefi, H., Bui, T.Q., Rabczuk T.: Transient Analysis of Laminated Composite Plates using Isogeometric Analysis. In: Topping BH V, editor. Proc. Eighth Int. Conf. Eng. Comput. Technol., Civil-Comp Press, Stirlingshire, Scotland; 2012, p. 1–17. https://doi.org/10.4203/ccp.100.43

  9. Maleki, S., Tahani, M., Andakhshideh, A.: Static and transient analysis of laminated cylindrical shell panels with various boundary conditions and general lay-ups. ZAMM–J Appl. Math. Mech/Zeitschrift für Angew. Math. Mech. 92, 124–140 (2012). https://doi.org/10.1002/zamm.201000236

    Article  MathSciNet  MATH  Google Scholar 

  10. Guven, I., Celik, E., Madenci, E.: Transient Response of Composite Sandwich Panels Subjected to Blast Wave Pressure. 47th AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. AIAA, Reston, VA, 2012, p. 1–10. https://doi.org/10.2514/6.2006-2008.

  11. Civalek, Ö., Avcar, M.: Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng. Comput. 38, 489–521 (2020). https://doi.org/10.1007/s00366-020-01168-8

    Article  Google Scholar 

  12. Civalek, Ö.: Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Compos. Part B Eng. 50, 171–179 (2013). https://doi.org/10.1016/j.compositesb.2013.01.027

    Article  Google Scholar 

  13. Civalek, Ö.: Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC–HDQ methods. Appl. Math. Model. 31, 606–624 (2007). https://doi.org/10.1016/j.apm.2005.11.023

    Article  MATH  Google Scholar 

  14. Qu, Y., Wu, S., Li, H., Meng, G.: Three-dimensional free and transient vibration analysis of composite laminated and sandwich rectangular parallelepipeds: beams, plates and solids. Compos. Part B Eng. 73, 96–110 (2015). https://doi.org/10.1016/j.compositesb.2014.12.027

    Article  Google Scholar 

  15. Choi, I.H.: Geometrically nonlinear transient analysis of composite laminated plate and shells subjected to low-velocity impact. Compos. Struct. 142, 7–14 (2016). https://doi.org/10.1016/j.compstruct.2016.01.070

    Article  Google Scholar 

  16. Sobhani, E., Avcar, M.: Natural frequency analysis of imperfect GNPRN conical shell, cylindrical shell, and annular plate structures resting on Winkler-Pasternak foundations under arbitrary boundary conditions. Eng. Anal. Bound. Elem. 144, 145–164 (2022). https://doi.org/10.1016/J.ENGANABOUND.2022.08.018

    Article  MathSciNet  Google Scholar 

  17. Sobhani, E., Masoodi, A.R., Civalek, Ö., Avcar, M.: Natural frequency analysis of FG-GOP/ polymer nanocomposite spheroid and ellipsoid doubly curved shells reinforced by transversely-isotropic carbon fibers. Eng. Anal. Bound. Elem. 138, 369–389 (2022). https://doi.org/10.1016/J.ENGANABOUND.2022.03.009

    Article  MathSciNet  MATH  Google Scholar 

  18. Sobhani, E., Arbabian, A., Civalek, Ö., Avcar, M.: The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells. Eng. with Comput. 2021, 1–28 (2021). https://doi.org/10.1007/S00366-021-01453-0

    Article  Google Scholar 

  19. Yang, Z., Wu, H., Yang, J., Liu, A., Safaei, B., Lv, J., et al.: Nonlinear forced vibration and dynamic buckling of FG graphene-reinforced porous arches under impulsive loading. Thin-Walled Struct. 181, 110059 (2022). https://doi.org/10.1016/J.TWS.2022.110059

    Article  Google Scholar 

  20. Yang, Z., Safaei, B., Sahmani, S., Zhang, Y.: A couple-stress-based moving Kriging meshfree shell model for axial postbuckling analysis of random checkerboard composite cylindrical microshells. Thin-Walled Struct. 170, 108631 (2022). https://doi.org/10.1016/J.TWS.2021.108631

    Article  Google Scholar 

  21. Yang, Z., Liu, A., Lai, S.K., Safaei, B., Lv, J., Huang, Y., et al.: Thermally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches. Eng. Struct. 250, 113243 (2022). https://doi.org/10.1016/J.ENGSTRUCT.2021.113243

    Article  Google Scholar 

  22. Yang, Z., Liu, A., Pi, Y.L., Fu, J., Gao, Z.: Nonlinear dynamic buckling of fixed shallow arches under impact loading: an analytical and experimental study. J. Sound Vib. 487, 115622 (2020). https://doi.org/10.1016/J.JSV.2020.115622

    Article  Google Scholar 

  23. Yang, Z., Wu, D., Yang, J., Lai, S.K., Lv, J., Liu, A., et al.: Dynamic buckling of rotationally restrained FG porous arches reinforced with graphene nanoplatelets under a uniform step load. Thin-Walled Struct. 166, 108103 (2021). https://doi.org/10.1016/J.TWS.2021.108103

    Article  Google Scholar 

  24. Turkmen, H.S.: The Dynamic Behavior of Composite Panels Subjected to Air Blast Loading. Explos. Blast Response Compos., Elsevier; 2017, p. 57–84. https://doi.org/10.1016/B978-0-08-102092-0.00003-0.

  25. Yang, S., Yang, Q.-S.Q.: Geometrically nonlinear transient response of laminated plates with nonlinear elastic restraints. Shock Vib. 2017, 1–9 (2014). https://doi.org/10.1155/2017/2189420

    Article  Google Scholar 

  26. Ghayesh, M.H., Farokhi, H.: Nonlinear dynamics of doubly curved shallow microshells. Nonlinear Dyn. 92, 803–814 (2018). https://doi.org/10.1007/s11071-018-4091-7

    Article  MATH  Google Scholar 

  27. Farokhi, H., Ghayesh, M.H.: On the dynamics of imperfect shear deformable microplates. Int. J. Eng. Sci. 133, 264–283 (2018). https://doi.org/10.1016/j.ijengsci.2018.04.011

    Article  MathSciNet  MATH  Google Scholar 

  28. Amabili, M., Reddy, J.N.: The nonlinear, third-order thickness and shear deformation theory for statics and dynamics of laminated composite shells. Compos. Struct. 244, 112265 (2020). https://doi.org/10.1016/j.compstruct.2020.112265

    Article  Google Scholar 

  29. Sahu, S.K., Das, P.: Experimental and numerical studies on vibration of laminated composite beam with transverse multiple cracks. Mech. Syst. Signal Process. 135, 106398 (2020). https://doi.org/10.1016/j.ymssp.2019.106398

    Article  Google Scholar 

  30. Devarajan, B., Kapania, R.K.: Analyzing thermal buckling in curvilinearly stiffened composite plates with arbitrary shaped cutouts using isogeometric level set method. Aerosp. Sci. Technol. 121, 107350 (2022). https://doi.org/10.1016/j.ast.2022.107350

    Article  Google Scholar 

  31. Devarajan, B., Kapania, R.K.: Thermal buckling of curvilinearly stiffened laminated composite plates with cutouts using isogeometric analysis. Compos. Struct. 238, 111881 (2020). https://doi.org/10.1016/j.compstruct.2020.111881

    Article  Google Scholar 

  32. Kumar, V., Dewangan, H.C., Sharma, N., Panda, S.K.: Numerical prediction of static and vibration responses of damaged (crack and delamination) laminated shell structure: an experimental verification. Mech. Syst. Signal. Process. 170, 108883 (2022). https://doi.org/10.1016/j.ymssp.2022.108883

    Article  Google Scholar 

  33. Liu, Y., Hu, W., Zhu, R., Safaei, B., Qin, Z., Chu, F.: Dynamic responses of corrugated cylindrical shells subjected to nonlinear low-velocity impact. Aerosp. Sci. Technol. 121, 107321 (2022). https://doi.org/10.1016/j.ast.2021.107321

    Article  Google Scholar 

  34. Shen, H.-S., Yang, J., Zhang, L.: Dynamic response of Reissner-Mindlin plates under the thermomechanical loading and resting on elastic foundations. J. Sound Vib. 232, 309–329 (2000). https://doi.org/10.1006/jsvi.1999.2745

    Article  Google Scholar 

  35. Shen, H.-S., Zheng, J.-J., Huang, X.-L.: Dynamic response of shear deformable laminated plates under thermomechanical loading and resting on elastic foundations. Compos. Struct. 60, 57–66 (2003). https://doi.org/10.1016/S0263-8223(02)00295-7

    Article  Google Scholar 

  36. Oguamanam, D.C.D., Hansen, J.S., Heppler, G.R.: Nonlinear transient response of thermally loaded laminated panels1. J. Appl. Mech. 71, 49–56 (2004). https://doi.org/10.1115/1.1631033

    Article  MATH  Google Scholar 

  37. Asadi, H., Beheshti, A.R.: On the nonlinear dynamic responses of FG-CNTRC beams exposed to aerothermal loads using third-order piston theory. Acta. Mech. 229, 2413–2430 (2018). https://doi.org/10.1007/s00707-018-2121-7

    Article  MathSciNet  MATH  Google Scholar 

  38. Nguyen, D.D., Kim, S.-E., Vu, T.A.T., Vu, A.M.: Vibration and nonlinear dynamic analysis of variable thickness sandwich laminated composite panel in thermal environment. J. Sandw. Struct. Mater. 23, 1541–1570 (2021). https://doi.org/10.1177/1099636219899402

    Article  Google Scholar 

  39. Patel, N.P., Sharma, D.S.: Bending of composite plate weakened by square hole. Int. J. Mech. Sci. 94–95, 131–139 (2015). https://doi.org/10.1016/j.ijmecsci.2015.02.021

    Article  Google Scholar 

  40. Batista, M.: On the stress concentration around a hole in an infinite plate subject to a uniform load at infinity. Int. J. Mech. Sci. 53, 254–261 (2011). https://doi.org/10.1016/j.ijmecsci.2011.01.006

    Article  Google Scholar 

  41. Sharma, D.S.: Moment distribution around polygonal holes in infinite plate. Int. J. Mech. Sci. 78, 177–182 (2014). https://doi.org/10.1016/j.ijmecsci.2013.10.021

    Article  Google Scholar 

  42. Dai, L., Chen, Y., Wang, Y., Lin, Y.: Experimental and numerical analysis on vibration of plate with multiple cutouts based on primitive cell plate with double cutouts. Int. J. Mech. Sci. 183, 105758 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105758

    Article  Google Scholar 

  43. Nayak, C.B., Khante, S.N.: Linear transient dynamic analysis of plates with and without cutout. Arab. J. Sci. Eng. 46, 10681–10693 (2021). https://doi.org/10.1007/s13369-021-05523-9

    Article  Google Scholar 

  44. Nanda, N., Bandyopadhyay, J.N.: Geometrically nonlinear transient analysis of laminated composite shells using the finite element method. J. Sound Vib. 325, 174–185 (2009). https://doi.org/10.1016/j.jsv.2009.02.044

    Article  Google Scholar 

  45. Kant, T., Swaminathan, K.: Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory. Compos. Struct. 56, 329–344 (2002). https://doi.org/10.1016/S0263-8223(02)00017-X

    Article  Google Scholar 

  46. Hirwani, C.K., Panda, S.K., Mahapatra, T.R.: Nonlinear finite element analysis of transient behavior of delaminated composite plate. J. Vib. Acoust. Trans. ASME 140, 1–48 (2018). https://doi.org/10.1115/1.4037848

    Article  Google Scholar 

  47. Parhi, A., Singh, B.N.: Nonlinear free vibration analysis of shape memory alloy embedded laminated composite shell panel. Mech. Adv. Mater. Struct. 24, 713–724 (2017). https://doi.org/10.1080/15376494.2016.1196777

    Article  Google Scholar 

  48. Dewangan, H.C., Sharma, N., Panda, S.K.: Numerical nonlinear static analysis of cutout-borne multilayered structures and experimental validation. AIAA J. 60, 985–997 (2022). https://doi.org/10.2514/1.J060643

    Article  Google Scholar 

  49. Reddy, J.N.: Mechanics of Laminated Composite Theory and Analysis Plates and Shells, 2nd edn. CRC Press, Cambridge (2004)

    MATH  Google Scholar 

  50. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Element Analysis, 4th edn. Wiley, Singapore (2009)

    Google Scholar 

  51. Bathe, K.J.: Finite Element Procedures, 2nd edn. Prentice Hall, Pearson Education, Inc., Watertown, MA (1996)

    MATH  Google Scholar 

  52. Dewangan, H.C., Thakur, M., Deepak, S.S.K., Panda, S.K.: Nonlinear frequency prediction of cutout borne multi-layered shallow doubly curved shell structures. Compos. Struct. 279, 114756 (2022). https://doi.org/10.1016/j.compstruct.2021.114756

    Article  Google Scholar 

  53. Dewangan, H.C., Panda, S.K.: Nonlinear thermoelastic numerical frequency analysis and experimental verification of cutout abided laminated shallow shell structure. J. Press. Vessel. Technol. 10(1115/1), 4054843 (2022)

    Google Scholar 

  54. Dewangan, H.C., Sharma, N., Hirwani, C.K., Panda, S.K.: Numerical eigenfrequency and experimental verification of variable cutout (square/rectangular) borne layered glass/epoxy flat/curved panel structure. Mech. Based Des. Struct. Mach. 50, 1640–1657 (2022). https://doi.org/10.1080/15397734.2020.1759432

    Article  Google Scholar 

  55. Mohanty, J., Sahu, S.K., Parhi, P.K.: Numerical and experimental study on free vibration of delaminated woven fiber glass/epoxy composite plates. Int. J. Struct. Stab. Dyn. 12, 377–394 (2012). https://doi.org/10.1142/s0219455412500083

    Article  Google Scholar 

  56. Jones, R.M.: Mechanics of Composites Materials. Taylor and Francis, Philadelphia (1998)

    Google Scholar 

  57. Ram, K.S.S., Sinha, P.K.: Hygrothermal effects on the free vibration of laminated composite plates. J. Sound Vib. 158, 133–148 (1992). https://doi.org/10.1016/0022-460X(92)90669-O

    Article  MATH  Google Scholar 

  58. Nanda, N., Pradyumna, S.: Nonlinear dynamic response of laminated shells with imperfections in hygrothermal environments. J. Compos. Mater. 45, 2103–2112 (2011). https://doi.org/10.1177/0021998311401061

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewangan, H.C., Panda, S.K., Mahmoud, S.R. et al. Geometrical large deformation-dependent numerical dynamic deflection prediction of cutout borne composite structure under thermomechanical loadings and experimental verification. Acta Mech 233, 5465–5489 (2022). https://doi.org/10.1007/s00707-022-03403-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03403-3

Navigation