Skip to main content
Log in

Thermal vibration of functionally graded porous beams with classical and non-classical boundary conditions using a modified Fourier method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, the modified Fourier method is developed to analyze thermal vibration of functionally graded porous beams based on the third-order shear deformation theory. It can provide accurate results due to satisfying both force and geometrical boundary conditions. Three different forms including uniform, linear and nonlinear temperature distribution are considered. Some important effects including patterns of porous distribution, porous coefficient, temperature rises, spring constants, and classical and non-classical boundary conditions are investigated. Based on this extensive investigation, it is worth revealing that the frequencies of the beams carrying pores with uniform distribution decrease to the same point at the critical buckling temperature, while the beams with symmetrical and un-symmetrical forms illustrate different manners in which the details are explained in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  2. Banhart, J.: Manufacture, characterization and application of cellular metals and metal foams. Prog. Mater. Sci. 46(6), 559–632 (2001)

    Article  Google Scholar 

  3. Wulf, R., Mendes, M.A.A., Skibina, V., Al-Zoubi, A., Trimis, D., Ray, S., Gross, U.: Experimental and numerical determination of effective thermal conductivity of open cell FeCrAl-alloy metal foams. Int. J. Therm. Sci. 86, 95–103 (2014)

    Article  Google Scholar 

  4. Bhattacharya, A., Calmidi, V.V., Mahajan, R.L.: Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45, 1017–1031 (2002)

    Article  MATH  Google Scholar 

  5. Ramirez, I.J., Matsumaru, K., Ishizaki, K.: Development of a near zero thermal expansion porous material. J. Ceram. Soc. Jpn. 114(12), 1111–1114 (2006)

    Article  Google Scholar 

  6. Khalili, N., Uchaipichat, A., Javadi, A.A.: Skeletal thermal expansion coefficient and thermo-hydro-mechanical constitutive relations for saturated homogeneous porous media. Mech. Mater. 42, 593–598 (2010)

    Article  Google Scholar 

  7. Ain, Q.T., He, J.-H.: On two-scale dimension and its applications. Therm. Sci. 23, 1707–1712 (2019)

    Article  Google Scholar 

  8. He, C.-H., Liu, C., He, J.-H., Gepreel, K.A.: Low frequency property of a fractal vibration model for a concrete beam. Fractals 29(5), 2150117 (2021)

    Article  MATH  Google Scholar 

  9. Anjum, N., He, C.-H., He, J.-H.: Two-scale fractal theory for the population dynamics. Fractals 29(7), 2150182 (2021)

    Article  MATH  Google Scholar 

  10. Pandey, P.M., Rathee, S., Srivastava, M., Jain, P.K.: Functionally Graded Materials (FGMs). CRC Press, Boca Raton (2022)

    Google Scholar 

  11. Wattanasakulpong, N., Bui, T.Q.: Vibration analysis of third-order shear deformable FGM beams with elastic support by Chebyshev collocation method. Int. J. Struct. Stab. Dyn. 18(5), 1850071 (2018)

    Article  MathSciNet  Google Scholar 

  12. Tossapanon, P., Wattanasakulpong, N.: Flexural vibration analysis of functionally graded sandwich plates resting on elastic foundation with arbitrary boundary conditions: Chebyshev collocation technique. J. Sandw. Struct. Mater. 22(2), 156–189 (2020)

    Article  Google Scholar 

  13. Beg, M.S., Yasin, M.Y.: Bending, free and forced vibration of functionally graded deep curved beams in thermal environment using an efficient layerwise theory. Mech. Mater. 159, 103919 (2021)

    Article  Google Scholar 

  14. Hao, Y.X., Chen, L.H., Zhang, W., Lei, J.G.: Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate. J. Sound Vib. 312, 862–892 (2008)

    Article  Google Scholar 

  15. Zhang, W., Yang, J., Hao, Y.: Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory. Nonlinear Dyn. 59, 619–660 (2010)

    Article  MATH  Google Scholar 

  16. Hao, Y.X., Zhang, W., Yang, J.: Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method. Compos. B. Eng. 42, 402–413 (2011)

    Article  Google Scholar 

  17. Zhang, W., Hao, Y.X., Yang, J.: Nonlinear dynamics of FGM circular cylindrical shell with clamped–clamped edges. Compos. Struct. 94, 1075–1086 (2012)

    Article  Google Scholar 

  18. Hao, Y.X., Wang, M.X., Zhang, W., Yang, S.W., Liu, L.T., Qian, Y.H.: Bending-torsion coupling bursting oscillation of a sandwich conical panel under parametric excitation. J. Sound Vib. 495, 115904 (2021)

    Article  Google Scholar 

  19. Zhang, W., Chen, J.E., Cao, D.X., Chen, L.H.: Nonlinear dynamic responses of a truss core sandwich plate. Compos. Struct. 108, 367–386 (2014)

    Article  Google Scholar 

  20. Chen, J.E., Zhang, W., Liu, J., Sun, M.: Dynamic properties of truss core sandwich plate with tetrahedral core. Compos. Struct. 134, 869–882 (2015)

    Article  Google Scholar 

  21. Chen, D., Yang, J., Kitipornchai, S.: Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev–Ritz method. Arch. Civ. Mech. Eng. 19(1), 157–170 (2019)

    Article  Google Scholar 

  22. Wattanasakulpong, N., Chaikittiratana, A., Pornpeerakeat, S.: Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory. Acta Mech. Sin. 34(6), 1124–1135 (2018)

    Article  MathSciNet  Google Scholar 

  23. Chen, D., Yang, J., Kitipornchai, S.: Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech. Sci. 108–109, 14–22 (2016)

    Article  Google Scholar 

  24. Chen, D., Yang, J., Kitipornchai, S.: Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 133, 54–61 (2015)

    Article  Google Scholar 

  25. Chen, D., Kitipornchai, S., Yang, J.: Dynamic response and energy absorption of functionally graded porous structures. Mater. Des. 140, 473–487 (2018)

    Article  Google Scholar 

  26. Chen, D., Kitipornchai, S., Yang, J.: Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct. 107, 39–48 (2016)

    Article  Google Scholar 

  27. Srikarun, B., Songsuwan, W., Wattanasakulpong, N.: Linear and nonlinear static bending of sandwich beams with functionally graded porous core under different distributed loads. Compos. Struct. 276, 114538 (2021)

    Article  Google Scholar 

  28. Wang, Y., Zhou, A., Fu, T., Zhang, W.: Transient response of a sandwich beam with functionally graded porous core traversed by a non-uniformly distributed moving mass. Int. J. Mech. Mater. Des. 16, 519–540 (2020)

    Article  Google Scholar 

  29. Chen, Y., Jin, G., Zhang, C., Ye, T., Xue, Y.: Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory. Compos. B. Eng. 153, 376–386 (2018)

    Article  Google Scholar 

  30. Trinh, L.C., Vo, T.P., Thai, H.T., Nguyen, T.K.: An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads. Compos. B. Eng. 100, 152–163 (2016)

    Article  Google Scholar 

  31. Wattanasakulpong, N., Prusty, B.G., Kelly, D.W.: Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams. Int. J. Mech. Sci. 53(9), 734–743 (2011)

    Article  Google Scholar 

  32. Ungbhakorn, V., Wattanasakulpong, N.: Thermo-elastic vibration analysis of third-order shear deformable functionally graded plates with distributed patch mass under thermal environment. Appl. Acoust. 74(9), 1045–1059 (2013)

    Article  Google Scholar 

  33. Trabelsi, S., Frikha, A., Zghal, S., Dammak, F.: A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Eng. Struct. 178, 444–459 (2019)

    Article  Google Scholar 

  34. Shakouri, M.: Free vibration analysis of functionally graded rotating conical shells in thermal environment. Compos. B. Eng. 163, 574–584 (2019)

    Article  Google Scholar 

  35. Van Do, V.N., Tran, M.T., Lee, C.H.: Nonlinear thermal buckling analyses of functionally graded plates by a mesh-free radial point interpolation method. Eng. Anal. Bound. Elem. 87, 153–164 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vuong, P.M., Duc, N.D.: Nonlinear response and buckling analysis of eccentrically stiffened FGM toroidal shell segments in thermal environment. Aerosp. Sci. Technol. 79, 383–398 (2018)

    Article  Google Scholar 

  37. Zhang, D.G.: Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica 49, 283–293 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edn. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  39. Qatu, M.S.: Vibration of Laminated Shells and Plates, 1st edn. Elsevier, Netherlands (2004)

    MATH  Google Scholar 

  40. He, J.-H.: Generalized variational principles for buckling analysis of circular cylinders. Acta Mech. 231, 899–906 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou, Z., Huang, X., Hua, H.: Large amplitude vibration analysis of a non-uniform beam under arbitrary boundary conditions based on a constrained variational modeling method. Acta Mech. 232, 4811–4832 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Romero, I., Gebhardt, C.G.: Variational principles for nonlinear Kirchhoff rods. Acta Mech. 231, 625–647 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ansari, R., Hassani, R., Hasrati, E., Rouhi, H.: Geometrically nonlinear vibrations of FG-GPLRC cylindrical panels with cutout based on HSDT and mixed formulation: a novel variational approach. Acta Mech. 232, 3417–3439 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  44. Doeva, O., Masjedi, P.K., Weaver, P.M.: Static analysis of composite beams on variable stiffness elastic foundations by the homotopy analysis method. Acta Mech. 232, 4169–4188 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  45. Anjum, N., He, J.-H.: Laplace transform: making the variational iteration method easier. Appl. Math. Lett. 92, 134–138 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Li, W.L.: Dynamic analysis of beams with arbitrary elastic supports at both ends. J. Sound Vib. 246(1), 751–756 (2001)

    Article  Google Scholar 

  47. Su, Z., Jin, G., Wang, Y., Ye, X.: A general Fourier formulation for free vibration analysis of functionally graded sandwich beams with arbitrary boundary condition and resting on elastic foundations. Acta Mech. 227, 1493–1514 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Chen, Q., Du, J.: A Fourier series solution for the transverse vibration of rotating beams with elastic boundary supports. Appl. Acoust. 155, 1–15 (2019)

    Article  Google Scholar 

  49. Qin, B., Zhong, R., Wang, T., Wang, Q., Xu, Y., Hu, Z.: A unified Fourier series solution for vibration analysis of FG-CNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions. Compos. Struct. 232, 11549 (2020)

    Article  Google Scholar 

  50. Zhang, W., Fang, Z., Yang, X.D., Liang, F.: A series solution for free vibration of moderately thick cylindrical shell with general boundary conditions. Eng. Struct. 165, 422–440 (2018)

    Article  Google Scholar 

  51. Zhao, J., Wang, Q., Deng, X., Choe, K., Xie, F., Shua, C.: A modified series solution for free vibration analyses of moderately thick functionally graded porous (FGP) deep curved and straight beams. Compos. B. Eng. 165, 155–166 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Walailak University (WU65205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuttawit Wattanasakulpong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Supplementary functions and their derivatives with respect to x from the first to fourth derivatives defined by the symbol of prime are provided in Table 7.

The constants of the supplementary functions and their derivatives are expressed as follows:

Table 7 The first and second function and their derivatives

For the first function:

$$\begin{aligned} & d_{11}^{0} = \frac{{L^{3} }}{{\pi^{3} }} + \frac{9L}{{4\pi }},\;\;d_{12}^{0} = - \frac{{L^{3} }}{{3\pi^{3} }} - \frac{L}{12\pi },\;\;d_{11}^{1} = \frac{{L^{2} }}{{2\pi^{2} }} + \frac{9}{8}, \\ & d_{12}^{1} = - \frac{{L^{2} }}{{2\pi^{2} }} - \frac{1}{8},\;\;d_{11}^{2} = - \frac{L}{4\pi } - \frac{9\pi }{{16L}}, \\ & d_{12}^{2} = \frac{3L}{{4\pi }} + \frac{3\pi }{{16L}},\;\;d_{11}^{3} = - \frac{1}{8} - \frac{{9\pi^{2} }}{{32L^{2} }},\;\;d_{12}^{3} = \frac{9}{8} + \frac{{9\pi^{2} }}{{32L^{2} }}, \\ & d_{11}^{4} = \frac{\pi }{16L} + \frac{{9\pi^{3} }}{{64L^{3} }},\;\;d_{12}^{4} = - \frac{27\pi }{{16L}} - \frac{{27\pi^{3} }}{{64L^{3} }}, \\ \end{aligned}$$

For the second function:

$$\begin{aligned} & d_{21}^{0} = - \frac{{L^{3} }}{{\pi^{3} }} - \frac{9L}{{4\pi }},\;\;d_{22}^{0} = - \frac{{L^{3} }}{{3\pi^{3} }} - \frac{L}{12\pi }, \\ & d_{21}^{1} = \frac{{L^{2} }}{{2\pi^{2} }} + \frac{9}{8},\;\;d_{22}^{1} = \frac{{L^{2} }}{{2\pi^{2} }} + \frac{1}{8},\;\;d_{21}^{2} = \frac{L}{4\pi } + \frac{9\pi }{{16L}}, \\ & d_{22}^{2} = \frac{3L}{{4\pi }} + \frac{3\pi }{{16L}},\;\;d_{21}^{3} = - \frac{1}{8} - \frac{{9\pi^{2} }}{{32L^{2} }},\;\;d_{22}^{3} = - \frac{9}{8} - \frac{{9\pi^{2} }}{{32L^{2} }}, \\ & d_{21}^{4} = - \frac{\pi }{16L} - \frac{{9\pi^{3} }}{{64L^{3} }},\;\;d_{22}^{4} = - \frac{27\pi }{{16L}} - \frac{{27\pi^{3} }}{{64L^{3} }}. \\ \end{aligned}$$

Fourier cosine series expansion coefficients related to the first and second functions written in the above Table of this appendix can be expressed as:

$$\sin \left( {\frac{\pi }{2L}x} \right) = \sum\limits_{m = 0}^{M} {\alpha_{1}^{m} \cos \lambda_{m} x\quad \Rightarrow } \quad \alpha_{1}^{m} = \left\{ \begin{gathered} \;\frac{2}{\pi }\quad \quad \quad \quad \;\,m = 0 \hfill \\ \;\frac{4}{{(1 - 4m^{2} )\pi }}\quad m \ne 0 \hfill \\ \end{gathered}, \right.$$
$$\sin \left( {\frac{3\pi }{{2L}}x} \right) = \sum\limits_{m = 0}^{M} {\alpha_{2}^{m} \cos \lambda_{m} x\quad \Rightarrow } \quad \alpha_{2}^{m} = \left\{ \begin{gathered} \;\frac{2}{3\pi }\quad \quad \quad \quad \;\,m = 0 \hfill \\ \;\frac{12}{{(9 - 4m^{2} )\pi }}\quad m \ne 0 \hfill \\ \end{gathered}, \right.$$
$$\cos \left( {\frac{\pi }{2L}x} \right) = \sum\limits_{m = 0}^{M} {\alpha_{3}^{m} \cos \lambda_{m} x\quad \Rightarrow } \quad \alpha_{3}^{m} = \left\{ \begin{gathered} \;\frac{2}{\pi }\quad \quad \quad \quad \;\,m = 0 \hfill \\ \;\frac{{4( - 1)^{m} }}{{(1 - 4m^{2} )\pi }}\quad m \ne 0 \hfill \\ \end{gathered}, \right.$$
$$\cos \left( {\frac{3\pi }{{2L}}x} \right) = \sum\limits_{m = 0}^{M} {\alpha_{4}^{m} \cos \lambda_{m} x\quad \Rightarrow } \quad \alpha_{4}^{m} = \left\{ \begin{gathered} \; - \frac{2}{3\pi }\quad \quad \quad \;\,m = 0 \hfill \\ \;\frac{{12( - 1)^{m + 1} }}{{(9 - 4m^{2} )\pi }}\quad m \ne 0 \hfill \\ \end{gathered}, \right.$$
$$\sin \lambda_{m} x = \sum\limits_{i = 0}^{M} {\beta_{i}^{m} \cos \lambda_{i} x\quad \Rightarrow } \quad \beta_{i}^{m} = \left\{ \begin{gathered} \;0\quad \quad \quad \quad \;\,\quad \;\,m = 0 \hfill \\ \;0\quad \quad \quad \quad \quad \quad m = i \hfill \\ \;\frac{{1 - ( - 1)^{m} }}{m\pi }\quad \quad \;\;\,m \ne 0,\;i = 0 \hfill \\ \;\frac{{2m\left[ {( - 1)^{m + i} - 1} \right]}}{{(i^{2} - m^{2} )\pi }}\;\;m \ne 0,\;i \ne 0 \hfill. \\ \end{gathered} \right.$$

By using the above formulations, one can obtain the coefficients of Fourier cosine series associated with the supplementary functions and their derivatives, which are utilized in Eqs. (30.13), as in Table 8.

Table 8 Coefficients of the first and second function

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eiadtrong, S., Wattanasakulpong, N. & Vo, T.P. Thermal vibration of functionally graded porous beams with classical and non-classical boundary conditions using a modified Fourier method. Acta Mech 234, 729–750 (2023). https://doi.org/10.1007/s00707-022-03401-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03401-5

Navigation