Skip to main content
Log in

The influence of temperature variations on large-amplitude vibration of functionally graded metallic foam arches reinforced with graphene platelets

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper aims to study the influence of temperature variations on the large-amplitude free vibration behaviour of functionally graded (FG) metallic foam arches reinforced with graphene platelets (GPLs) using finite element methodology. The temperature-dependent material properties are considered, and the homogenized effective material properties are estimated using the Halpin–Tsai micromechanics model and Voigt’s rule of mixture. The present formulation is based on higher-order shear deformation theory in conjunction with geometric nonlinearity for the structural analysis. A C0 finite element model is implemented to develop the system of nonlinear governing equations, which are solved numerically using the direct-iterative procedure. The material properties are assumed to be varying along the thickness direction. A convergence and validation study has also been performed to validate the accuracy of the present nonlinear finite element formulation. Various design parameters such as porosity index, the weight fraction of GPLs, porosity distributions, opening angle, temperature dependency and independency etc. are considered for the detailed parametric study. New insights pertaining to the effect of temperature on nonlinear frequencies and mode shapes at higher amplitudes are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included in the article.

References

  1. Betts, C.: Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: A review. Mater. Sci. Technol. 28, 129–143 (2012). https://doi.org/10.1179/026708311X13135950699290

    Article  Google Scholar 

  2. Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater Sci. 46, 559–632 (2001). https://doi.org/10.1016/S0079-6425(00)00002-5

    Article  Google Scholar 

  3. Lefebvre, L.P., Banhart, J., Dunand, D.C.: Porous metals and metallic foams: Current status and recent developments. Adv. Eng. Mater. 10, 775–787 (2008). https://doi.org/10.1002/adem.200800241

    Article  Google Scholar 

  4. Zhao, C.Y.: Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transf. 55, 3618–3632 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.017

    Article  Google Scholar 

  5. Pollien, A., Conde, Y., Pambaguian, L., Mortensen, A.: Graded open-cell aluminium foam core sandwich beams. Mater. Sci. Eng. A 404, 9–18 (2005). https://doi.org/10.1016/j.msea.2005.05.096

    Article  Google Scholar 

  6. Hangai, Y., Takahashi, K., Utsunomiya, T., Kitahara, S., Kuwazuru, O., Yoshikawa, N.: Fabrication of functionally graded aluminum foam using aluminum alloy die castings by friction stir processing. Mater. Sci. Eng. A 534, 716–719 (2012). https://doi.org/10.1016/j.msea.2011.11.100

    Article  Google Scholar 

  7. Hassani, A., Habibolahzadeh, A., Bafti, H.: Production of graded aluminum foams via powder space holder technique. Mater. Des. 40, 510–515 (2012). https://doi.org/10.1016/j.matdes.2012.04.024

    Article  Google Scholar 

  8. Hangai, Y., Saito, K., Utsunomiya, T., Kitahara, S., Kuwazuru, O., Yoshikawa, N.: Compression properties of Al/Al-Si-Cu alloy functionally graded aluminum foam fabricated by friction stir processing route. Mater. Trans. 54, 405–408 (2013). https://doi.org/10.2320/matertrans.M2012376

    Article  Google Scholar 

  9. Magnucka-Blandzi, E.: Axi-symmetrical deflection and buckling of circular porous-cellular plate. Thin-Walled Struct. 46, 333–337 (2008). https://doi.org/10.1016/j.tws.2007.06.006

    Article  Google Scholar 

  10. Chen, D., Yang, J., Kitipornchai, S.: Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 133, 54–61 (2015). https://doi.org/10.1016/j.compstruct.2015.07.052

    Article  Google Scholar 

  11. Chen, D., Yang, J., Kitipornchai, S.: Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech. Sci. 108–109, 14–22 (2016). https://doi.org/10.1016/j.ijmecsci.2016.01.025

    Article  Google Scholar 

  12. Akbaş, ŞD.: Thermal effects on the vibration of functionally graded deep beams with porosity. Int. J. Appl. Mech. 9, 1–18 (2017). https://doi.org/10.1142/S1758825117500764

    Article  Google Scholar 

  13. Amir, M., Talha, M.: An efficient three nodded finite element formulation for free vibration analysis of sandwich arches with graded metallic cellular core. Int. J. Appl. Mech. (2020). https://doi.org/10.1142/S1758825120500696

    Article  Google Scholar 

  14. Amir, M., Talha, M.: Influence of large amplitude vibration on geometrically imperfect sandwich curved panels embedded with gradient metallic cellular core. Int. J. Appl. Mech. 12, 2050099 (2020). https://doi.org/10.1142/S1758825120500994

    Article  Google Scholar 

  15. Zhao, J., Wang, Q., Deng, X., Choe, K., Xie, F., Shuai, C.: A modified series solution for free vibration analyses of moderately thick functionally graded porous (FGP) deep curved and straight beams. Compos. B Eng. 165, 155–166 (2019). https://doi.org/10.1016/j.compositesb.2018.11.080

    Article  Google Scholar 

  16. Zhao, S., Zhao, Z., Yang, Z., Ke, L.L., Kitipornchai, S., Yang, J.: Functionally graded graphene reinforced composite structures: a review. Eng. Struct. 210, 110339 (2020). https://doi.org/10.1016/j.engstruct.2020.110339

    Article  Google Scholar 

  17. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009). https://doi.org/10.1021/nn9010472

    Article  Google Scholar 

  18. Chu, K., Jia, C.: Enhanced strength in bulk graphene-copper composites. Phys. Status Solidi (A) Appl. Mater. Sci. 211, 184–190 (2014). https://doi.org/10.1002/pssa.201330051

    Article  Google Scholar 

  19. Kitipornchai, S., Chen, D., Yang, J.: Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2016). https://doi.org/10.1016/j.matdes.2016.12.061

    Article  Google Scholar 

  20. Reza Barati, M., Zenkour, A.M.: Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Compos. Struct. 181, 194–202 (2017). https://doi.org/10.1016/j.compstruct.2017.08.082

    Article  Google Scholar 

  21. Chen, D., Yang, J., Kitipornchai, S.: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 142, 235–245 (2017). https://doi.org/10.1016/j.compscitech.2017.02.008

    Article  Google Scholar 

  22. Sahmani, S., Aghdam, M.M., Rabczuk, T.: Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos. Struct. 186, 68–78 (2018). https://doi.org/10.1016/j.compstruct.2017.11.082

    Article  Google Scholar 

  23. Polit, O., Anant, C., Anirudh, B., Ganapathi, M.: Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect. Compos. B Eng. 166, 310–327 (2019). https://doi.org/10.1016/j.compositesb.2018.11.074

    Article  Google Scholar 

  24. Liu, Z., Yang, C., Gao, W., Wu, D., Li, G.: Nonlinear behaviour and stability of functionally graded porous arches with graphene platelets reinforcements. Int. J. Eng. Sci. 137, 37–56 (2018). https://doi.org/10.1016/j.ijengsci.2018.12.003

    Article  MathSciNet  MATH  Google Scholar 

  25. Cong, P.H., Duc, N.D.: New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelastic Pasternak medium in a thermal environment. Acta Mech. 229, 3651–3670 (2018). https://doi.org/10.1007/s00707-018-2178-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Ganapathi, M., Anirudh, B., Anant, C., Polit, O.: Dynamic characteristics of functionally graded graphene reinforced porous nanocomposite curved beams based on trigonometric shear deformation theory with thickness stretch effect. Mech. Adv. Mater. Struct. (2019). https://doi.org/10.1080/15376494.2019.1601310

    Article  Google Scholar 

  27. Polit, O., Pradyumna, B., Ganapathi, M.: Large amplitude free flexural vibrations of functionally graded graphene platelets reinforced porous composite curved beams using finite element based on trigonometric shear deformation theory. Int. J. Non-Linear Mech. 116, 302–317 (2019). https://doi.org/10.1016/j.ijnonlinmec.2019.07.010

    Article  Google Scholar 

  28. Bahranifard, F., Golbahar Haghighi, M.R., Malekzadeh, P.: In-plane responses of multilayer FG-GPLRC curved beams in thermal environment under moving load. Acta Mech. 231, 2679–2696 (2020). https://doi.org/10.1007/s00707-020-02654-2

    Article  MathSciNet  Google Scholar 

  29. Shahgholian, D., Safarpour, M., Rahimi, A.R., Alibeigloo, A.: Buckling analyses of functionally graded graphene-reinforced porous cylindrical shell using the Rayleigh-Ritz method. Acta Mech. 231, 1887–1902 (2020). https://doi.org/10.1007/s00707-020-02616-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Babaei, H., Kiani, Y., Eslami, M.R.: Vibrational behavior of thermally pre-/post-buckled FG-CNTRC beams on a nonlinear elastic foundation: a two-step perturbation technique. Acta Mech. 232, 3897–3915 (2021). https://doi.org/10.1007/s00707-021-03027-z

    Article  MathSciNet  MATH  Google Scholar 

  31. Babaei, H.: Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation. Appl. Math. Comput. 413, 126606 (2022). https://doi.org/10.1016/j.amc.2021.126606

    Article  MathSciNet  MATH  Google Scholar 

  32. Esmaeili, H.R., Kiani, Y., Beni, Y.T.: Vibration characteristics of composite doubly curved shells reinforced with graphene platelets with arbitrary edge supports. Acta Mech. 233, 665–683 (2022). https://doi.org/10.1007/s00707-021-03140-z

    Article  MathSciNet  MATH  Google Scholar 

  33. Chidamparam, P., Leissa, A.W.: Vibrations of planar curved beams, rings, and arches. Appl. Mech. Rev. 46, 467–483 (1993). https://doi.org/10.1115/1.3120374

    Article  Google Scholar 

  34. Li, S., Peng, G., Ji, M., Cheng, F., Chen, Z., Li, Z.: Impact identification of composite cylinder based on improved deep metric learning model and weighted fusion Tikhonov regularized total least squares. Compos. Struct. 283, 115144 (2022). https://doi.org/10.1016/j.compstruct.2021.115144

    Article  Google Scholar 

  35. Li, Z., Chen, Y., Zheng, J., Sun, Q.: Thermal-elastic buckling of the arch-shaped structures with FGP aluminum reinforced by composite graphene platelets. Thin-Walled Struct. 157, 107142 (2020). https://doi.org/10.1016/j.tws.2020.107142

    Article  Google Scholar 

  36. Li, Z., Zheng, J., Chen, Y., Sun, Q., Zhang, Z.: Effect of temperature variations on the stability mechanism of the confined functionally graded porous arch with nanocomposites reinforcement under mechanical loading. Compos. B Eng. 176, 107330 (2019). https://doi.org/10.1016/j.compositesb.2019.107330

    Article  Google Scholar 

  37. Yas, M.H., Rahimi, S.: Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets. Appl. Math. Mech. 41, 1209–1226 (2020). https://doi.org/10.1007/s10483-020-2634-6

    Article  MathSciNet  MATH  Google Scholar 

  38. Yas, M.H., Rahimi, S.: Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using Generalized differential quadrature method. Aerosp. Sci. Technol. 107, 106261 (2020). https://doi.org/10.1016/j.ast.2020.106261

    Article  Google Scholar 

  39. Yang, Z., Wu, D., Yang, J., Lai, S.K., Lv, J., Liu, A., Fu, J.: Dynamic buckling of rotationally restrained FG porous arches reinforced with graphene nanoplatelets under a uniform step load. Thin-Walled Struct. 166, 1–11 (2021). https://doi.org/10.1016/j.tws.2021.108103

    Article  Google Scholar 

  40. Wang, Y., Zhang, W.: On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams. Compos. Struct. 296, 115880 (2022). https://doi.org/10.1016/j.compstruct.2022.115880

    Article  Google Scholar 

  41. Affdl, J.C.H., Kardos, J.L.: The Halpin-Tsai equations: a review. Polym. Eng. Sci. 16, 344–352 (1976). https://doi.org/10.1002/pen.760160512

    Article  Google Scholar 

  42. Roberts, A.P., Garboczi, E.J.: Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Mater. 49, 189–197 (2001). https://doi.org/10.1016/S1359-6454(00)00314-1

    Article  Google Scholar 

  43. Piggott, M.R., Taplin, D.M.R.: Load Bearing Fiber Composites. Springer, Berlin (1980)

    Google Scholar 

  44. Heyliger, P.R., Reddy, J.N.: A higher order beam finite element for bending and vibration problems. J. Sound Vib. 126, 309–326 (1988). https://doi.org/10.1016/0022-460X(88)90244-1

    Article  MATH  Google Scholar 

  45. Cook, R.D.: Application of finite element analysis, (1987)

  46. Talha, M., Singh, B.N.: Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl. Math. Model. 34, 3991–4011 (2010). https://doi.org/10.1016/j.apm.2010.03.034

    Article  MathSciNet  MATH  Google Scholar 

  47. Qatu, M.S.: Theories and analyses of thin and moderately thick laminated composite curved beams. Int. J. Solids Struct. 30, 2743–2756 (1993). https://doi.org/10.1016/0020-7683(93)90152-W

    Article  MATH  Google Scholar 

  48. Kundu, C.K., Sinha, P.K.: Nonlinear transient analysis of laminated composite shells. J. Reinf. Plast. Compos. 25, 1129–1147 (2006). https://doi.org/10.1177/0731684406065196

    Article  Google Scholar 

  49. Amir, M., Talha, M.: Thermoelastic vibration of shear deformable functionally graded curved beams with microstructural defects. Int. J Struct. Stab. Dyn. (2018). https://doi.org/10.1142/S0219455418501353

    Article  Google Scholar 

  50. Nguyen, T.K., Nguyen, B.D., Vo, T.P., Thai, H.T.: Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams. Compos. Struct. 176, 1050–1060 (2017). https://doi.org/10.1016/j.compstruct.2017.06.036

    Article  Google Scholar 

  51. Wattanasakulpong, N., Gangadhara Prusty, B., Kelly, D.W.: Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams. Int. J. Mech. Sci. 53, 734–743 (2011). https://doi.org/10.1016/j.ijmecsci.2011.06.005

    Article  Google Scholar 

  52. Hahn, T.A.: Thermal expansion of copper from 20 to 800 k—standard reference material 736. J. Appl. Phys. 41, 5096–5101 (1970). https://doi.org/10.1063/1.1658614

    Article  Google Scholar 

  53. Shaina, P.R., George, L., Yadav, V., Jaiswal, M.: Estimating the thermal expansion coefficient of graphene: the role of graphene-substrate interactions. J. Phys. Condens. Matter. (2016). https://doi.org/10.1088/0953-8984/28/8/085301

    Article  Google Scholar 

  54. Li, W., Kou, H., Zhang, X., Ma, J., Li, Y., Geng, P., Wu, X., Chen, L., Fang, D.: Temperature-dependent elastic modulus model for metallic bulk materials. Mech. Mater. 139, 103194 (2019). https://doi.org/10.1016/j.mechmat.2019.103194

    Article  Google Scholar 

  55. Shakir, M., Talha, M.: Influence of material uncertainty on higher-order FG-GPLs reinforced porous spherical panels under blast loading. Thin-Walled Struct. 176, 109319 (2022). https://doi.org/10.1016/j.tws.2022.109319

    Article  Google Scholar 

  56. Mukhopadhyay, M., Sheikh, A.H.: Large amplitude vibration of horizontally curved beams: a finite element approach. J. Sound Vib. 180, 239–251 (1995). https://doi.org/10.1006/jsvi.1995.0077

    Article  MATH  Google Scholar 

  57. Malekzadeh, P.: Two-dimensional in-plane free vibrations of functionally graded circular arches with temperature-dependent properties. Compos. Struct. 91, 38–47 (2009). https://doi.org/10.1016/j.compstruct.2009.04.034

    Article  Google Scholar 

  58. Li, S.R., Teng, Z.C., Zhou, Y.H.: Free vibration of heated Euler-Bernoulli beams with thermal postbuckling deformations. J. Therm. Stresses 27, 843–856 (2004). https://doi.org/10.1080/01495730490486352

    Article  Google Scholar 

  59. Ebrahimi, F., Ghasemi, F., Salari, E.: Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica 51, 223–249 (2016). https://doi.org/10.1007/s11012-015-0208-y

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Talha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd, F., Talha, M. The influence of temperature variations on large-amplitude vibration of functionally graded metallic foam arches reinforced with graphene platelets. Acta Mech 234, 425–450 (2023). https://doi.org/10.1007/s00707-022-03398-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03398-x

Navigation