Skip to main content
Log in

Homotopy solution for nonlinear vibration analysis of multilayer graphene platelets-reinforced thin-walled pipes conveying fluid with rectangular cross-section

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Nonlinear vibration of fluid-conveying pipes with thin-walled rectangular cross-sections is analytically explored for the first time. The pipe is considered to be multilayer which is reinforced by graphene platelets by considering four distribution patterns. The nonlinear vibration of fluid-conveying pipes with three cross-sections of square, horizontal, and vertical rectangle is studied. For modeling the pipe, the thin-walled Euler–Bernoulli beam theory is applied. By considering von Kármán’s nonlinearities, the nonlinear equations of motion are derived using Hamilton’s principle. The nonlinear partial differential equation of motion is discretized by the Galerkin method. The analytical solutions for the time response and nonlinear frequency of the pipe are presented by applying the homotopy analysis method. The main novelty of this research is about the investigation of the nonlinear vibration of pipes conveying fluid with thin-walled rectangular cross-sections which has not been investigated in the former works. Numerical investigations in this study are carried out by studying the effects of cross-section, fluid velocity, length of the pipe, distribution patterns, and weight fraction of graphene platelets on the nonlinear frequency, backbone curves, and time history of graphene platelets-reinforced fluid-conveying thin-walled pipe. The different numerical results indicate that reinforcing the pipe with graphene platelets and the type of the pipe’s cross-section have significant effects on the performance of the fluid-conveying pipe systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ibrahim, R.: Overview of mechanics of pipes conveying fluids—Part I: Fundamental studies. J. Press. Vessel Technol. 132(3), 034001 (2010)

    Article  Google Scholar 

  2. Ibrahim, R.: Mechanics of pipes conveying fluids—Part II: applications and fluidelastic problems. J. Press. Vessel Technol. 133(2), 024001 (2011)

    Article  Google Scholar 

  3. Guo, Q., Liu, Y., Chen, B., Zhang, Y.: Stochastic natural frequency analysis of varying diameter functionally graded material pipe conveying fluid. Ocean Eng. 237, 109630 (2021)

    Article  Google Scholar 

  4. Tang, Y., Yang, T.: Bi-directional functionally graded nanotubes: fluid conveying dynamics. Int. J. Appl. Mech. 10(04), 1850041 (2018)

    Article  Google Scholar 

  5. Liang, F., Yang, X.-D., Zhang, W., Qian, Y.-J.: Nonlinear free vibration of spinning viscoelastic pipes conveying fluid. Int. J. Appl. Mech. 10(07), 1850076 (2018)

    Article  Google Scholar 

  6. Liang, F., Qian, Y., Chen, Y., Gao, A.: Nonlinear forced vibration of spinning pipes conveying fluid under lateral harmonic excitation. Int. J. Appl. Mech. 13(09), 2150098 (2021)

    Article  Google Scholar 

  7. Kheiri, M.: Nonlinear dynamics of imperfectly-supported pipes conveying fluid. J. Fluids Struct. 93, 102850 (2020)

    Article  Google Scholar 

  8. Reddy, R.S., Panda, S., Gupta, A.: Nonlinear dynamics of an inclined FG pipe conveying pulsatile hot fluid. Int. J. Non-Linear Mech. 118, 103276 (2020)

    Article  Google Scholar 

  9. Javadi, M., Noorian, M., Irani, S.: Nonlinear vibration analysis of cracked pipe conveying fluid under primary and superharmonic resonances. Int. J. Press. Vessels Pip. 191, 104326 (2021)

    Article  Google Scholar 

  10. Yamashita, K., Nishiyama, N., Katsura, K., Yabuno, H.: Hopf-Hopf interactions in a spring-supported pipe conveying fluid. Mech. Syst. Signal Process. 152, 107390 (2021)

    Article  Google Scholar 

  11. Wang, Y., Wang, L., Ni, Q., Yang, M., Liu, D., Qin, T.: Non-smooth dynamics of articulated pipe conveying fluid subjected to a one-sided rigid stop. Appl. Math. Model. 89, 802–818 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liang, F., Gao, A., Li, X.-F., Zhu, W.-D.: Nonlinear parametric vibration of spinning pipes conveying fluid with varying spinning speed and flow velocity. Appl. Math. Model. 95, 320–338 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sabahi, M.A., Saidi, A.R., Khodabakhsh, R.: An analytical solution for nonlinear vibration of functionally graded porous micropipes conveying fluid in damping medium. Ocean Eng. 245, 110482 (2022)

    Article  Google Scholar 

  14. Khudayarov, B., Komilova, K.M., Turaev, F.Z.: Numerical simulation of vibration of composite pipelines conveying pulsating fluid. Int. J. Appl. Mech. 11(09), 1950090 (2019)

    Article  Google Scholar 

  15. Li, Q., Liu, W., Lu, K., Yue, Z.: Nonlinear parametric vibration of the geometrically imperfect pipe conveying pulsating fluid. Int. J. Appl. Mech. 12(06), 2050064 (2020)

    Article  Google Scholar 

  16. A. Elkaimbillah, B. Braikat, F. Mohri, Damil, N.: A one-dimensional model for computing forced nonlinear vibration of thin-walled composite beams with open variable cross-sections. Thin-Walled Structures, p. 107211, 2020.

  17. Bahaadini, R., Saidi, A.R.: On the stability of spinning thin-walled porous beams. Thin-Walled Struct. 132, 604–615 (2018)

    Article  MATH  Google Scholar 

  18. Bahaadini, R., Saidi, A.R.: Aerothermoelastic flutter analysis of pre-twisted thin-walled rotating blades reinforced with functionally graded carbon nanotubes. Eur. J. Mech.-A/Solids 75, 285–306 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bahaadini, R., Saidi, A.R.: Aeroelastic analysis of functionally graded rotating blades reinforced with graphene nanoplatelets in supersonic flow. Aerosp. Sci. Technol. 80, 381–391 (2018)

    Article  Google Scholar 

  20. Cai, D., Liang, J., Ou, H., Li, G., Cui, J.: Mechanical properties and joining mechanism of electrohydraulic expansion joints for 6063 aluminum alloy/304 stainless steel thin-walled pipes. Thin-Walled Struct. 161, 107427 (2021)

    Article  Google Scholar 

  21. Habtemariam, A.K., Könke, C., Zabel, V., Bianco, M.J.: Generalized beam theory formulation for thin-walled pipes with circular axis. Thin-Walled Struct. 159, 107243 (2021)

    Article  Google Scholar 

  22. Zhang, Y., Gorman, D.G., Reese, J.: A finite element method for modelling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluid. J. Sound Vib. 245(1), 93–112 (2001)

    Article  MATH  Google Scholar 

  23. Bahaadini, R., Dashtbayazi, M.R., Hosseini, M., Khalili-Parizi, Z.: Stability analysis of composite thin-walled pipes conveying fluid. Ocean Eng. 160, 311–323 (2018)

    Article  Google Scholar 

  24. Bahaadini, R., Saidi, A.R., Hosseini, M.: Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes. Acta Mech. 229(12), 5013–5029 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bahaadini, R., Saidi, A.R.: Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment. Eur. J. Mech.-A/Solids 72, 298–309 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Y.Q., Wan, Y.H., Zu, J.W.: Nonlinear dynamic characteristics of functionally graded sandwich thin nanoshells conveying fluid incorporating surface stress influence. Thin-Walled Struct. 135, 537–547 (2019)

    Article  Google Scholar 

  27. Cao, J., Liu, Y., Liu, W.: The effect of two cases of temperature distributions on vibration of fluid-conveying functionally graded thin-walled pipes. J. Strain Anal. Eng. Design 53(5), 324–331 (2018)

    Article  Google Scholar 

  28. M. Ghane, A. R. Saidi, Bahaadini R.: Vibration of Fluid-Conveying Nanotubes Subjected to Magnetic Field Based on the Thin-Walled Timoshenko Beam Theory. Applied Mathematical Modelling, 2019.

  29. Lu, Z.-Q., Zhang, K.-K., Ding, H., Chen, L.-Q.: Nonlinear vibration effects on the fatigue life of fluid-conveying pipes composed of axially functionally graded materials. Nonlinear Dyn. 100(2), 1091–1104 (2020)

    Article  Google Scholar 

  30. Zhu, B., Chen, X.-C., Guo, Y., Li, Y.-H.: Static and dynamic characteristics of the post-buckling of fluid-conveying porous functionally graded pipes with geometric imperfections. Int. J. Mech. Sci. 189, 105947 (2021)

    Article  Google Scholar 

  31. Zhou, K., Ni, Q., Dai, H., Wang, L.: Nonlinear forced vibrations of supported pipe conveying fluid subjected to an axial base excitation. J. Sound Vib. 471, 115189 (2020)

    Article  Google Scholar 

  32. Zhu, B., Xu, Q., Li, M., Li, Y.: Nonlinear free and forced vibrations of porous functionally graded pipes conveying fluid and resting on nonlinear elastic foundation. Compos. Struct. 252, 112672 (2020)

    Article  Google Scholar 

  33. Li, Q., Liu, W., Lu, K., Yue, Z.: Nonlinear parametric vibration of a fluid-conveying pipe flexibly restrained at the ends. Acta Mech. Solida Sin. 33(3), 327–346 (2020)

    Article  Google Scholar 

  34. Khodabakhsh, R., Saidi, A.R., Bahaadini, R.: An analytical solution for nonlinear vibration and post-buckling of functionally graded pipes conveying fluid considering the rotary inertia and shear deformation effects. Appl. Ocean Res. 101, 102277 (2020)

    Article  Google Scholar 

  35. Zhou, K., Ni, Q., Chen, W., Dai, H., Hagedorn, P., Wang, L.: Static equilibrium configuration and nonlinear dynamics of slightly curved cantilevered pipe conveying fluid. J. Sound Vib. 490, 115711 (2021)

    Article  Google Scholar 

  36. Czerwiński, A., Łuczko, J.: Nonlinear vibrations of planar curved pipes conveying fluid. J. Sound Vib. 501, 116054 (2021)

    Article  Google Scholar 

  37. Chen, W., Wang, L., Peng, Z.: A magnetic control method for large-deformation vibration of cantilevered pipe conveying fluid. Nonlinear Dyn. 105(2), 1459–1481 (2021)

    Article  Google Scholar 

  38. Mao, X.-Y., Shu, S., Fan, X., Ding, H., Chen, L.-Q.: An approximate method for pipes conveying fluid with strong boundaries. J. Sound Vib. 505, 116157 (2021)

    Article  Google Scholar 

  39. Jia-Rui, Y., Xin, F., Song, S., Hu, D., Li-Qun, C.: Free vibration analysis and numerical simulation of slightly curved pipe conveying fluid based on timoshenko beam theory. Int. J. Appl. Mech. (2022)

  40. Casetta, L., Pesce, C.P.: The generalized Hamilton’s principle for a non-material volume. Acta Mech. 224(4), 919–924 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Steinboeck, A., Saxinger, M., Kugi, A.: Hamilton's principle for material and nonmaterial control volumes using lagrangian and eulerian description of motion. Appli. Mech. Rev. vol. 71, no. 1, (2019)

  42. Irschik, H., Holl, H.: The equations of Lagrange written for a non-material volume. Acta Mech. 153(3), 231–248 (2002)

    Article  MATH  Google Scholar 

  43. Irschik, H., Holl, H.J.: Lagrange’s equations for open systems, derived via the method of fictitious particles, and written in the Lagrange description of continuum mechanics. Acta Mech. 226(1), 63–79 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Stangl M., Irschik, H.: Dynamics of an euler elastica pipe with internal flow of fluid. In: PAMM: Proceedings in Applied Mathematics and Mechanics, vol. 6, no. 1: Wiley Online Library, pp. 335–336 (2006)

  45. Stangl, M., Gerstmayr, J., Irschik, H.: An alternative approach for the analysis of nonlinear vibrations of pipes conveying fluid. J. Sound Vib. 310(3), 493–511 (2008)

    Article  Google Scholar 

  46. Stangl, M., Beliaev, N., Belyaev, A., Irschik, H.: Applying Lagrange equations and Hamilton’s principle to vibrations of fluid conveying pipes. Proc. of the 33th Summer School on Advanced Problems in Mechanics (APM’05), pp. 269–275 (2005)

  47. McIver, D.: Hamilton’s principle for systems of changing mass. J. Eng. Math. 7(3), 249–261 (1973)

    Article  MATH  Google Scholar 

  48. Mohan, V.B., Lau, K.-T., Hui, D., Bhattacharyya, D.: Graphene-based materials and their composites: a review on production, applications and product limitations. Compos. B Eng. 142, 200–220 (2018)

    Article  Google Scholar 

  49. Wang, Y., Feng, C., Santiuste, C., Zhao, Z., Yang, J.: Buckling and postbuckling of dielectric composite beam reinforced with Graphene Platelets (GPLs). Aerosp. Sci. Technol. 91, 208–218 (2019)

    Article  Google Scholar 

  50. Yang, Z., Tam, M., Zhang, Y., Kitipornchai, S., Lv, J., Yang, J.: Nonlinear dynamic response of FG graphene platelets reinforced composite beam with edge cracks in thermal environment. Int. J. Struct. Stab. Dyn. 20(14), 2043005 (2020)

    Article  MathSciNet  Google Scholar 

  51. Majidi-Mozafari, K., Bahaadini, R., Saidi, A. R., Khodabakhsh, R.: An analytical solution for vibration analysis of sandwich plates reinforced with graphene nanoplatelets. Eng. Comput., pp. 1–17, (2020)

  52. Chen, Z., Wang, A., Qin, B., Wang, Q., Zhong, R.: Investigation on free vibration and transient response of functionally graded graphene platelets reinforced cylindrical shell resting on elastic foundation. Eur. Phys. J. Plus 135(7), 1–34 (2020)

    Article  Google Scholar 

  53. Al-Furjan, M., Farrokhian, A., Mahmoud, S., Kolahchi, R.: Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact. Thin-Walled Structures 163, 107706 (2021)

    Article  Google Scholar 

  54. Shenas, A. G., Malekzadeh, P., Ziaee, S.: Analysis of vibration in rotating pretwisted functionally graded graphene platelets reinforced nanocomposite laminated blades with an attached point mass. Proc. of the Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. p. 09544062211008471, (2021)

  55. Zhao, T.Y., Jiang, L.P., Pan, H.G., Yang, J., Kitipornchai, S.: Coupled free vibration of a functionally graded pre-twisted blade-shaft system reinforced with graphene nanoplatelets. Compos. Struct. 262, 113362 (2021)

    Article  Google Scholar 

  56. Khodabakhsh, R., Saidi, A.R., Bahaadini, R.: Nonlinear vibrations of graphene reinforced pipes conveying fluid. Amirkabir J. Mech. Eng. 53(8), 1–1 (2021)

    Google Scholar 

  57. Abbasnejad, B., Shabani, R., Rezazadeh, G.: Stability analysis of a piezoelectrically actuated micro-pipe conveying fluid. Microfluid. Nanofluid. 19(3), 577–584 (2015)

    Article  Google Scholar 

  58. Cornish, R.: Flow in a pipe of rectangular cross-section. Proc. Royal Soc. London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 120, no. 786, pp. 691–700, 1928.

  59. Xie, Y., Wang, X., Lin, Y.: Stress intensity factors for cracked rectangular cross-section thin-walled tubes. Eng. Fract. Mech. 71(11), 1501–1513 (2004)

    Article  Google Scholar 

  60. Nadeem, S., Asghar, S., Hayat, T., Hussain, M.: The Rayleigh Stokes problem for rectangular pipe in Maxwell and second grade fluid. Meccanica 43(5), 495–504 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhao, G., Liu, Y., Yang, H.: Effect of clearance on wrinkling of thin-walled rectangular tube in rotary draw bending process. Int. J. Adv. Manuf. Technol. 50(1), 85–92 (2010)

    Article  Google Scholar 

  62. Lu, J., Shen, L., Huang, Q., Sun, D., Li, B., Tan, Y.: Investigation of a rectangular heat pipe radiator with parallel heat flow structure for cooling high-power IGBT modules. Int. J. Therm. Sci. 135, 83–93 (2019)

    Article  Google Scholar 

  63. Huang, Z., Zhang, X.: Three-point bending of thin-walled rectangular section tubes with indentation mode. Thin-Walled Struct. 137, 231–250 (2019)

    Article  Google Scholar 

  64. Cheng, X., et al.: Cross-section deformation behaviors of a thin-walled rectangular tube of continuous varying radii in the free bending technology. Thin-Walled Struct. 150, 106670 (2020)

    Article  Google Scholar 

  65. Yang, J., Wu, H., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017)

    Article  Google Scholar 

  66. Affdl, J.H., Kardos, J.: The Halpin-Tsai equations: a review. Polym. Eng. Sci. 16(5), 344–352 (1976)

    Article  Google Scholar 

  67. Librescu, L., Oh, S.Y., Song, O.: Spinning thin-walled beams made of functionally graded materials: modeling, vibration and instability. Eur. J. Mech.-A/Solids 23(3), 499–515 (2004)

    Article  MATH  Google Scholar 

  68. Librescu, L., Song, O.: Thin-Walled Composite Beams: Theory and Application. Springer Science & Business Media, 2005.

  69. Paidoussis, M. P.: Fluid-Structure Interactions: Slender Structures and Axial Flow. Academic press, 1998.

  70. Khodabakhsh, R., Dashtbayazi, M.: Nonlinear vibration analysis of the composite cable using perturbation method and the Green-Lagrangian nonlinear strain. Mech. Adv. Compos. Struct. 6(1), 27–34 (2019)

    Google Scholar 

  71. Liao, S.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC, 2003.

  72. Tang, Y., Yang, T.: Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material. Compos. Struct. 185, 393–400 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Saidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodabakhsh, R., Saidi, A.R. & Bahaadini, R. Homotopy solution for nonlinear vibration analysis of multilayer graphene platelets-reinforced thin-walled pipes conveying fluid with rectangular cross-section. Acta Mech 234, 577–598 (2023). https://doi.org/10.1007/s00707-022-03389-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03389-y

Navigation