Skip to main content
Log in

An analytical multiscale modeling of a nanocomposite anode with graphene nanosheets for lithium-ion battery

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An analytical calculation of diffusion-induced stress in a layered electrode composed of a current collector and a nanocomposite active plate for lithium-ion batteries is proposed. The active plate of the bilayer nanocomposite anode is reinforced by graphene nanosheets (GNSs), whose mechanical properties are predicted by the Mori–Tanaka micromechanical method. The reinforced GNSs will make agglomeration in the matrix, which has a certain obstacle to reducing the overall stress level of the anode. The size effect of a single GNS also affects the corresponding material properties, and the Halpin–Tsai equation can be used to acquire the reliable prediction results. The analytical solutions of the diffusion-induced stress and strain of the nanocomposite anode under galvanostatic charging operation are derived, and then, the elastoplastic stress distribution in the interior of the anode is obtained. In addition, the effect of GNS’s thickness on the migration of the plastic interface is also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scrosati, B., Hassoun, J., Sun, Y.K.: Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287–3295 (2011). https://doi.org/10.1039/C1EE01388B

    Article  Google Scholar 

  2. Zuo, X., Zhu, J., Müller-Buschbaum, P., Cheng, Y.J.: Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013

    Article  Google Scholar 

  3. McDowell, M.T., Lee, S.W., Nix, W.D., Cui, Y.: 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4985 (2013). https://doi.org/10.1002/adma.201301795

    Article  Google Scholar 

  4. Wang, C.M., Li, X., Wang, Z., et al.: In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett. 12, 1624–1632 (2012). https://doi.org/10.1021/nl204559u

    Article  Google Scholar 

  5. Feng, H.P., et al.: Carbon-based core–shell nanostructured materials for electrochemical energy storage. J. Mater. Chem. A 6, 7310–7337 (2018). https://doi.org/10.1039/C8TA01257A

    Article  Google Scholar 

  6. Yen, Y.C., et al.: Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells. J. Electrochem. Soc. 156, A95 (2009). https://doi.org/10.1149/1.3032230

    Article  Google Scholar 

  7. Wang, H., Liu, Y., Luo, S., et al.: Effect of TiO2 on the sintering temperature and dielectric properties of Li2O–MgO–ZnO–B2O3–SiO2 ceramic composites for LTCC applications. J. Mater. Sci. Mater Electron. 33, 1000–1007 (2022). https://doi.org/10.1007/s10854-021-07370-8

    Article  Google Scholar 

  8. Yu, H., Liu, X., Li, D.: Experimental measurement of stress evolution in silicon carbide composite electrode during electrochemical cycling. Mater. Sci. Semiconductor Process. 138, 106275 (2022). https://doi.org/10.1016/j.mssp.2021.106275

    Article  Google Scholar 

  9. Gao, X., et al.: Unlocking multiphysics design guidelines on Si/C composite nanostructures for high-energy-density and robust lithium-ion battery anode. Nano Energy 81, 105591 (2021). https://doi.org/10.1016/j.nanoen.2020.105591

    Article  Google Scholar 

  10. Li, G.D., Tang, Z.Y.: Noble metal nanoparticle and metal oxide core/yolk–shell nanostructures as catalysts: recent progress and perspective. Nanoscale 6, 3995–4011 (2014). https://doi.org/10.1039/C3NR06787D

    Article  Google Scholar 

  11. Ng, S.H., et al.: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 45, 6896–6899 (2006). https://doi.org/10.1002/anie.200601676

    Article  Google Scholar 

  12. Li, X.L., et al.: Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. J. Mater. Chem. 22, 11014–11017 (2012). https://doi.org/10.1039/C2JM31286G

    Article  Google Scholar 

  13. Liu, N., et al.: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotech 9, 187–192 (2014). https://doi.org/10.1038/nnano.2014.6

    Article  Google Scholar 

  14. Huang, X., et al.: Graphene-based electrodes. Adv. Mat. 24, 5979–6004 (2012). https://doi.org/10.1002/adma.201201587

    Article  Google Scholar 

  15. Liang, B., et al.: Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power Sources 267, 469–490 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.096

    Article  Google Scholar 

  16. Li, D.W., Wang, Y.K., Hu, J.Z., et al.: In situ measurement of mechanical property and stress evolution in a composite silicon electrode. J. Power Sources 366, 80–85 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.004

    Article  Google Scholar 

  17. Li, D.W., Wang, Y.K., Hu, J.Z., et al.: Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling. J. Power Sources 387, 9–15 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.048

    Article  Google Scholar 

  18. Shao, G.S., et al.: Mechanical properties of graphene nanoplates reinforced copper matrix composites prepared by electrostatic self-assembly and spark plasma sintering. Mater. Sci. Eng. A 739, 329–334 (2019). https://doi.org/10.1016/j.msea.2018.10.067

    Article  Google Scholar 

  19. Gao, X., et al.: Three-dimensional modeling of electrochemical behavior in sio/graphite composite anode for high energy density lithium-ion battery. J. Electrochem. En. Conv. Stor. 19, 041004 (2022). https://doi.org/10.1115/1.4054649

    Article  Google Scholar 

  20. Franco, A.A.: Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Adv. 3, 13027 (2013). https://doi.org/10.1039/c3ra23502e

    Article  Google Scholar 

  21. Pouyanmehr, R., Hassanzadeh-Aghdam, M.K., Ansari, R.: Effect of graphene nanosheet dispersion on diffusion-induced stresses in layered Sn-based nanocomposite electrode for lithium-ion batteries. Mech. Mater. 145, 103390 (2020). https://doi.org/10.1016/j.mechmat.2020.103390

    Article  Google Scholar 

  22. Liu, B., et al.: A simultaneous multiscale and multiphysics model and numerical implementation of a core-shell model for lithium-ion full-cell batteries. ASME. J. Appl. Mech. 86, 041005 (2019). https://doi.org/10.1115/1.4042432

    Article  Google Scholar 

  23. Yang, J., Tse, J.S.: Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study. J. Phys. Chem. A 115, 13045 (2011). https://doi.org/10.1021/jp205057d

    Article  Google Scholar 

  24. Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C., Gao, H.J.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. 126, 250–257 (2004). https://doi.org/10.1115/1.1751182

    Article  Google Scholar 

  25. de Vasconcelos, L.S., et al.: Chemomechanics of rechargeable batteries: status, theories, and perspectives. Chem. Rev. (2022). https://doi.org/10.1021/acs.chemrev.2c00002

    Article  Google Scholar 

  26. Prussin, S.: Generation and distribution of dislocations by solute diffusion. J. Appl. Phys. 30, 1876–1881 (1961). https://doi.org/10.1063/1.1728256

    Article  Google Scholar 

  27. Christensen, J., Newman, J.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293–319 (2006). https://doi.org/10.1007/s10008-006-0095-1

    Article  Google Scholar 

  28. Li, J., Dozier, A.K., Li, Y., et al.: Crack pattern formation in thin film lithium-ion battery. J. Electrochem. Soc. 158, A689–A694 (2011). https://doi.org/10.1149/1.3574027

    Article  Google Scholar 

  29. Li, Y., Zhang, K., Zheng, B.L.: Stress Analysis in spherical composition-gradient electrodes of lithium-ion battery. J. Electrochem. Soc. 162, A223–A228 (2015). https://doi.org/10.1149/2.1021501jes

    Article  Google Scholar 

  30. Zhang, X.C., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particle. J. Electrochem. Soc. 154, A910–A916 (2007). https://doi.org/10.1149/1.2759840

    Article  Google Scholar 

  31. Lim, C., Yan, B., Yin, L., et al.: Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT. Electrochim. Acta 75, 279–287 (2012). https://doi.org/10.1016/j.electacta.2012.04.120

    Article  Google Scholar 

  32. Zhu, M., Park, J., Sastry, A.M.: Fracture analysis of the cathode in Li-ion batteries: a simulation study. J. Electrochem. Soc. 159, A492–A498 (2012). https://doi.org/10.1149/2.045204jes

    Article  Google Scholar 

  33. Gao, X., et al.: Insights into the Li diffusion mechanism in Si/C composite anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 21362–21370 (2021). https://doi.org/10.1021/acsami.1c03366

    Article  Google Scholar 

  34. Gao, X., et al.: Mechanics-driven anode material failure in battery safety and capacity deterioration issues: a review. ASME. Appl. Mech. Rev. AMR-21-1061 (2022). https://doi.org/10.1115/1.4054566.

  35. Xu, C.J., Weng, L., Chen, B.B., et al.: Modeling of the ratcheting behavior in flexible electrodes during cyclic deformation. J. Power Sources 446, 227353 (2020). https://doi.org/10.1016/j.jpowsour.2019.227353

    Article  Google Scholar 

  36. Shi, Y.T., Weng, L., Zhang, Y.D., et al.: Chemo-mechanical analysis of ratcheting deformation in silicon particle electrode under cyclic charging and discharging. Mech. Mater. 162, 104062 (2021). https://doi.org/10.1016/j.mechmat.2021.104062

    Article  Google Scholar 

  37. Zhou, X.S., et al.: Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Res. 12, 845–853 (2012). https://doi.org/10.1007/s12274-012-0268-4

    Article  Google Scholar 

  38. Deshpande, R., et al.: Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195, 5081–5088 (2010). https://doi.org/10.1016/j.jpowsour.2010.02.021

    Article  Google Scholar 

  39. Crank, J.: The Mathematics of Diffusion. Oxford (1979)

  40. Barai, P., Weng, G.J.: A theory of plasticity for carbon nanotube reinforced composites. Int. J. Plasticity 27, 539–559 (2011). https://doi.org/10.1016/j.ijplas.2010.08.006

    Article  MATH  Google Scholar 

  41. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965). https://doi.org/10.1016/0022-5096(65)90010-4

    Article  Google Scholar 

  42. Affdl, J.C.H., Kardos, J.L.: The Halpin-Tsai equations: a review. Polymer Eng. Sci. 16, 344–352 (1976). https://doi.org/10.1002/pen.760160512

    Article  Google Scholar 

  43. Rafiee, M.A., Rafiee, J., Wang, Z., et al.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009). https://doi.org/10.1021/nn9010472

    Article  Google Scholar 

  44. Lu, Y.J., Zhang, P.L., Wang, F.H., et al.: Reaction-diffusion-stress coupling model for Li-ion batteries: the role of surface effects on electrochemical performance. Electrochim. Acta 274, 359–369 (2018). https://doi.org/10.1016/j.electacta.2018.04.105

    Article  Google Scholar 

  45. Hao, F., Fang, D.N.: Reducing diffusion-induced stresses of electrode–collector bilayer in lithium-ion battery by pre-strain. J. Power Sources 242, 415–420 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.098

    Article  Google Scholar 

  46. Liu, D.Y., Chen, W.Q., Shen, X.D.: Diffusion-induced stresses in graphene-based composite bilayer electrode of lithium-ion battery. Compos. Struct. 165, 91–98 (2017). https://doi.org/10.1016/j.compstruct.2017.01.011

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guizhou Provincial General Undergraduate Higher Education Technology Supporting Talent Support Program (KY (2018)043), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_1074), the National Natural Science Foundation of China (10502025, 10872087, 11272143), the Key University Science Research Project of Jiangsu Province (17KJA130002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqiu Zhou or Rui Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

When yield failure occurs in plastic materials, von Mises stress is generally used as the failure criterion. The von Mises stress is calculated according to the principal stress in three directions, and the formula is as follows:

$$ \sigma_{Y} = \sqrt {\frac{1}{2}\left[ {\left( {\sigma_{1} - \sigma_{2} } \right)^{2} + \left( {\sigma_{2} - \sigma_{3} } \right)^{2} + \left( {\sigma_{3} - \sigma_{1} } \right)^{2} } \right]} $$
(A.1)

where \(\sigma_{Y}\) is the von Mises stress and \(\sigma_{1}\), \(\sigma_{2}\), \(\sigma_{3}\) are the first, second, and third principal stresses, respectively. Based on the generalized plane strain theory of thin plates, there are \(\sigma_{1} = \sigma_{{{{x}}x}}\), \(\sigma_{2} = \sigma_{yy}\), and \(\sigma_{3} = \sigma_{{{{zz}}}}\). Obtained by Eq. (2), \(\sigma_{1} = \sigma_{2}\), \(\sigma_{3} = 0\), so on the yield surface, the stress can be expressed as:

$$ \sigma_{Y} = \sigma_{xx}, $$
(A.2)

Appendix B

For elastoplastic materials, there is \(\Delta \sigma = C_{T} \Delta \varepsilon\), where

$$ C_{T} = \left\{ \begin{gathered} E, \, \left| \sigma \right| < \sigma_{Y} \hfill \\ E_{t} , \, \left| \sigma \right| > \sigma_{Y} \hfill \\ \end{gathered}. \right. $$
(A.3)

The physical meaning of \(E\) and \(\sigma_{Y}\) is consistent with the paper, and \(E_{t}\) is the strain hardening modulus. As shown in Fig. 

Fig. 9
figure 9

Schematic diagram of the strain hardening process

9, the strain increment in the plastic stage is divided into elastic and plastic parts, namely

$$ \Delta \varepsilon = \Delta \varepsilon_{e} + \Delta \varepsilon_{p}. $$
(A.4)

Integrate the above equation to obtain

$$ \varepsilon_{xx} = \int {\Delta \varepsilon } {\text{d}}x = \int {\left( {\Delta \varepsilon_{e} + \Delta \varepsilon_{p} } \right)} {\text{d}}x = \varepsilon_{xx}^{e} + \varepsilon_{xx}^{p} = \frac{1}{E}\sigma_{xx} + \varepsilon_{xx}^{p} $$
(A.5)

where \(\varepsilon_{xx}\) is the total strain in the plastic stage, and the superscripts \(e\) and \(p\) represent the elastic and plastic parts of the plastic stage, respectively. Likewise, the stress increment \(\Delta \sigma\) in the plastic stage can be expressed in any of the three moduli, namely

$$ \Delta \sigma = E\Delta \varepsilon_{e} = E_{p} \Delta \varepsilon_{p} = E_{t} \Delta \varepsilon $$
(A.6)

Therefore, in the plastic domain, the stress distribution can be expressed as

$$ \sigma_{xx} = \sigma_{Y} + \int {\Delta \sigma } {\text{d}}x = \sigma_{Y} + E_{p} \varepsilon_{xx}^{p}, $$
(A.7)

Substituting Eqs. (1) and (A.5) into Eq. (A.7) yields

$$ \sigma_{xx} = \frac{{E^{{\prime }} }}{{E^{{\prime }} + E_{p} }}\left[ {\sigma_{Y} + E_{p} \left( {\varepsilon_{0} + \kappa z - \frac{1}{3}\Omega C} \right)} \right]. $$
(A.8)

Appendix C

The representative volume element model for GNSs agglomeration is shown in Fig. 

Fig. 10
figure 10

Schematic diagram of a representative volume element model for GNSs agglomeration

10. As has been illustrated in the paper, the composite matrix volume \(V\) is consisting of two parts: the hypothetical matrix volume \(V_{m}\) which is made of the silicon initial matrix and the GNSs dispersed in random direction, and the agglomeration domain volume \(V_{a}\), namely

$$ V = V_{m} + V_{a}. $$
(A.9)

According to the volume relationship of each component of the composite material, the following can be obtained:

$$ \phi_{m} = \frac{{V_{m} }}{V},\phi_{a} = \frac{{V_{a} }}{V}, $$
(A.10)

where \(\phi_{m}\) is the volume fraction of the hypothetical matrix, and \(\phi_{a}\) is the volume fraction of the agglomeration domain. Suppose the volume of the additive in the composite is \(V_{r}\), the volume of the additive in the hypothetical matrix is \(V_{r}^{m}\), and the volume of the additive in the agglomeration domain is \(V_{r}^{a}\), then there is \(V_{r} = V_{r}^{m} + V_{r}^{a}\). According to the volume conservation relationship, it can be obtained

$$ \begin{aligned} & \phi_{r} = \frac{{V_{r} }}{V}, \\ & \phi_{r}^{m} = \frac{{V_{r}^{m} }}{{V_{r} }}, \\ & \phi_{r}^{a} = \frac{{V_{r}^{a} }}{{V_{r} }}, \\ & \phi_{r} = \phi_{r}^{m} + \phi_{r}^{a} \\ \end{aligned} $$
(A.11)

where \(\phi_{r}\) is the average volume fraction of GNSs, \(\phi_{r}^{m}\) is the volume fraction of GNSs in the hypothetical matrix, and \(\phi_{r}^{a}\) is the volume fraction of GNSs in the agglomeration domain.

Overall, the agglomeration parameters \(\xi\) and \(\lambda\) introduced in the paper are defined as

$$ \begin{aligned} & \xi = \frac{{V_{a} }}{V} = \phi_{a}, \\ & \lambda = \frac{{V_{r}^{a} }}{{V_{r} }} = \frac{{\phi_{r}^{a} }}{{\phi_{r} }}, \\ \end{aligned} $$
(A.12)

It should be noted that for a given average volume fraction of GNSs, \(\phi_{r}^{a}\) must be less than \(\xi\), that is, \(\lambda < \frac{\xi }{{\phi_{r} }}\). Similarly, for the agglomeration domain, the volume occupied by GNSs \(\frac{{V_{r}^{a} }}{{V_{a} }}\) should be larger than the average volume fraction of GNSs \(\phi_{r}\), i.e., \(\frac{{\phi_{r} \lambda }}{\xi } > \phi_{r}\). To sum up, it can be concluded that \(0 < \xi < \lambda < 1\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Guan, L., Shi, Y. et al. An analytical multiscale modeling of a nanocomposite anode with graphene nanosheets for lithium-ion battery. Acta Mech 233, 5265–5281 (2022). https://doi.org/10.1007/s00707-022-03379-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03379-0

Navigation