Skip to main content
Log in

Reddy’s third-order shear deformation shell theory for free vibration analysis of rotating stiffened advanced nanocomposite toroidal shell segments in thermal environments

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study investigates the free vibration of rotating stiffened toroidal shell segments in thermal environments. The shell segments are made of a functionally graded graphene platelet reinforced composite (FG-GPLRC)—advanced nanocomposite. Functionally graded (FG)-X, FG-O, and uniform distribution-type graphene platelet distribution patterns are considered. The equations of motion of rotating stiffened FG-GPLRC toroidal shell segments are derived based on variants of Reddy’s third-order shear deformation shell theory (TSDT) and the smeared-stiffener technique. Then, solutions are obtained using the Rayleigh–Ritz procedure. The effects of centrifugal and Coriolis forces and the initial hoop tension resulting from rotation are considered. Various numerical examples are produced to verify the implemented scheme and demonstrate the effects of material properties, rotating speed, temperature increment, boundary conditions, geometric parameters, and stiffeners on the natural frequencies of the shell. In addition, while an incomplete version of Reddy’s TSDT has been used widely in many recent studies, the present study points out significant differences between that version and the complete version of Reddy’s TSDT by numerical results and discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study. Data will be made available on request.

References

  1. Scarpa, F., Adhikari, S., Srikantha, P.A.: Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20(6), 065709 (2009)

    Article  Google Scholar 

  2. Lau, A.K.-T., Hui, D.: The revolutionary creation of new advanced materials—carbon nanotube composites. Compos. Part B Eng. 33(4), 263–277 (2002)

    Article  Google Scholar 

  3. Huang, X., Qi, X., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012)

    Article  Google Scholar 

  4. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.-Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884–3890 (2009)

    Article  Google Scholar 

  5. Shen, H.-S., Xiang, Y., Fan, Y.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments. Compos. Struct. 182, 447–456 (2017)

    Article  Google Scholar 

  6. Song, M., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)

    Article  Google Scholar 

  7. Krommer, M., Irschik, H.: On the influence of the electric field on free transverse vibrations of smart beams. Smart Mater. Struct. 8(3), 401–410 (1999)

    Article  Google Scholar 

  8. Irschik, H.: Enhancement of elementary beam theories in order to obtain exact solutions for elastic rectangular beams. Mech. Res. Commun. 68, 46–51 (2015)

    Article  Google Scholar 

  9. Krommer, M., Irschik, H.: Post-buckling of piezoelectric thin plates. Int. J. Struct. Stab. Dyn. 15(7), 1540020 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Thai, H.-T., Choi, D.-H.: A refined plate theory for functionally graded plates resting on elastic foundation. Compos. Sci. Technol. 71(16), 1850–1858 (2011)

    Article  Google Scholar 

  11. Thai, H.-T., Kim, S.-E.: A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates. Compos. Struct. 96, 165–173 (2013)

    Article  Google Scholar 

  12. Duc, N.D., Bich, D.H., Cong, P.H.: Nonlinear thermal dynamic response of shear deformable FGM plates on elastic foundations. J. Therm. Stress. 39(3), 278–297 (2016)

    Article  Google Scholar 

  13. Nguyen, L.B., Thai, C.H., Zenkour, A.M., Nguyen-Xuan, H.: An isogeometric Bézier finite element method for vibration analysis of functionally graded piezoelectric material porous plates. Int. J. Mech. Sci. 157–158, 165–183 (2019)

    Article  Google Scholar 

  14. Zenkour, A.M., Alghanmi, R.A.: Static response of sandwich plates with FG core and piezoelectric faces under thermo-electro-mechanical loads and resting on elastic foundations. Thin-Walled Struct. 157, 107025 (2020)

    Article  Google Scholar 

  15. Nguyen, V.-L., Tran, M.-T., Nguyen, V.-L., Le, Q.-H.: Static behaviour of functionally graded plates resting on elastic foundations using neutral surface concept. Arch. Mech. Eng. 68(1), 5–22 (2021)

    Google Scholar 

  16. Ren, B., Li, S.: Modeling and simulation of large-scale ductile fracture in plates and shells. Int. J. Solids Struct. 49(18), 2373–2393 (2012)

    Article  Google Scholar 

  17. Ninh, D.G., Bich, D.H.: Nonlinear thermal vibration of eccentrically stiffened ceramic-FGM-metal layer toroidal shell segments surrounded by elastic foundation. Thin-Walled Struct. 104, 198–210 (2016)

    Article  Google Scholar 

  18. Bich, D.H., Ninh, D.G., Kien, B.H., Hui, D.: Nonlinear dynamical analyses of eccentrically stiffened functionally graded toroidal shell segments surrounded by elastic foundation in thermal environment. Compos. B Eng. 95, 355–373 (2016)

    Article  Google Scholar 

  19. Peng, Y.X., Zhang, A.M., Li, S.F., Ming, F.R.: A beam formulation based on RKPM for the dynamic analysis of stiffened shell structures. Comput. Mech. 63(1), 35–48 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sofiyev, A.H.: Review of research on the vibration and buckling of the FGM conical shells. Compos. Struct. 211, 301–317 (2019)

    Article  Google Scholar 

  21. Tran, M.-T., Nguyen, V.-L., Pham, S.-D., Rungamornrat, J.: Free vibration of stiffened functionally graded circular cylindrical shell resting on Winkler-Pasternak foundation with different boundary conditions under thermal environment. Acta Mech. 231(6), 2545–2564 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, Q., Li, S., Zhang, A.M., Peng, Y.: On nonlocal geometrically exact shell theory and modeling fracture in shell structures. Comput. Methods Appl. Mech. Eng. 386, 114074 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Semenov, A.: Buckling of shell panels made of fiberglass and reinforced with an orthogonal grid of stiffeners. J. Appl. Comput. Mech. 7(3), 1856–1861 (2021)

    Google Scholar 

  24. Ameijeiras, M.P., Godoy, L.A.: Quasi-bifurcation and imperfection-sensitivity of cylindrical shells under pressures due to an explosion. J. Appl. Comput. Mech. 7(2), 984–992 (2021)

    Google Scholar 

  25. Dang, X.-H., Nguyen, V.-L., Tran, M.-T., Nguyen Thi, B.-P.: Free vibration characteristics of rotating functionally graded porous circular cylindrical shells with different boundary conditions. Iran. J. Sci. Technol. Trans. Mech. Eng. 46(1), 167–183 (2022)

    Article  Google Scholar 

  26. Chen, D., Yang, J., Kitipornchai, S.: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 142, 235–245 (2017)

    Article  Google Scholar 

  27. Kitipornchai, S., Chen, D., Yang, J.: Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2017)

    Article  Google Scholar 

  28. Polit, O., Anant, C., Anirudh, B., Ganapathi, M.: Functionally graded graphene reinforced porous nanocomposite curved beams: bending and elastic stability using a higher-order model with thickness stretch effect. Compos. B Eng. 166, 310–327 (2019)

    Article  Google Scholar 

  29. Pashmforoush, F.: Statistical analysis on free vibration behavior of functionally graded nanocomposite plates reinforced by graphene platelets. Compos. Struct. 213, 14–24 (2019)

    Article  Google Scholar 

  30. Moradi-Dastjerdi, R., Behdinan, K.: Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers. Int. J. Mech. Sci. 167, 105283 (2020)

    Article  Google Scholar 

  31. Javani, M., Kiani, Y., Eslami, M.R.: Geometrically nonlinear free vibration of FG-GPLRC circular plate on the nonlinear elastic foundation. Compos. Struct. 261, 113515 (2021)

    Article  Google Scholar 

  32. Liu, D., Kitipornchai, S., Chen, W., Yang, J.: Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Compos. Struct. 189, 560–569 (2018)

    Article  Google Scholar 

  33. Barati, M.R., Zenkour, A.M.: Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions. Mech. Adv. Mater. Struct. 26(18), 1580–1588 (2019)

    Article  Google Scholar 

  34. Wang, Y.Q., Ye, C., Zu, J.W.: Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp. Sci. Technol. 85, 359–370 (2019)

    Article  Google Scholar 

  35. Avey, M., Fantuzzi, N., Sofiyev, A.H., Kuruoglu, N.: Nonlinear vibration of multilayer shell-type structural elements with double curvature consisting of CNT patterned layers within different theories. Compos. Struct. 275, 114401 (2021)

    Article  Google Scholar 

  36. Deniz, A., Fantuzzi, N., Sofiyev, A.H., Kuruoglu, N.: Modeling and solution of large amplitude vibration problem of construction elements made of nanocomposites using shear deformation theory. Materials 14(14), 3843 (2021)

    Article  Google Scholar 

  37. Mahmure, A., Sofiyev, A.H., Fantuzzi, N., Kuruoglu, N.: Primary resonance of double-curved nanocomposite shells using nonlinear theory and multi-scales method: Modeling and analytical solution. Int. J. Non-Linear Mech. 137, 103816 (2021)

    Article  Google Scholar 

  38. Sofiyev, A.H., Avey, M., Kuruoglu, N.: An approach to the solution of nonlinear forced vibration problem of structural systems reinforced with advanced materials in the presence of viscous damping. Mech. Syst. Sig. Process. 161, 107991 (2021)

    Article  Google Scholar 

  39. Avey, M., Fantuzzi, N., Sofiyev, A.: Mathematical modeling and analytical solution of thermoelastic stability problem of functionally graded nanocomposite cylinders within different theories. Mathematics 10(7), 1081 (2022)

    Article  Google Scholar 

  40. Avey, M., Fantuzzi, N., Sofiyev, A.H., Kuruoglu, N.: Influences of elastic foundations on the nonlinear free vibration of composite shells containing carbon nanotubes within shear deformation theory. Compos. Struct. 286, 115288 (2022)

    Article  Google Scholar 

  41. Gia Phi, B., Van Hieu, D., Sedighi, H.M., Sofiyev, A.H.: Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments. Acta Mech. 233(6), 2249–2270 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  42. Phuong, N.T., Trung, N.-T., Van Doan, C., Thang, N.D., Duc, V.M., Nam, V.H.: Nonlinear thermomechanical buckling of FG-GRC laminated cylindrical shells stiffened by FG-GRC stiffeners subjected to external pressure. Acta Mech. 231(12), 5125–5144 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nguyen, T.P., Vu, M.D., Cao, V.D., Vu, H.N.: Nonlinear torsional buckling of functionally graded graphene-reinforced composite (FG-GRC) laminated cylindrical shells stiffened by FG-GRC laminated stiffeners in thermal environment. Polym. Compos. 42(6), 3051–3063 (2021)

    Article  Google Scholar 

  44. Bich, D.H., Ninh, D.G.: An analytical approach: nonlinear vibration of imperfect stiffened FGM sandwich toroidal shell segments containing fluid under external thermo-mechanical loads. Compos. Struct. 162, 164–181 (2017)

    Article  Google Scholar 

  45. Vuong, P.M., Duc, N.D.: Nonlinear response and buckling analysis of eccentrically stiffened FGM toroidal shell segments in thermal environment. Aerosp. Sci. Technol. 79, 383–398 (2018)

    Article  Google Scholar 

  46. Mirjavadi, S. S., Khan, I., Forsat, M., Barati, M. R., Hamouda, AMS.: Analyzing nonlinear vibration of metal foam stiffened toroidal convex/concave shell segments considering porosity distribution. Mech. Based Des. Struct. Mach. 2020, 1–17

  47. Qin, Z., Pang, X., Safaei, B., Chu, F.: Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos. Struct. 220, 847–860 (2019)

    Article  Google Scholar 

  48. Qin, Z., Safaei, B., Pang, X., Chu, F.: Traveling wave analysis of rotating functionally graded graphene platelet reinforced nanocomposite cylindrical shells with general boundary conditions. Results Phys. 15, 102752 (2019)

    Article  Google Scholar 

  49. Liew, K.M., Ng, T.Y., Zhao, X., Reddy, J.N.: Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells. Comput. Methods Appl. Mech. Eng. 191(37), 4141–4157 (2002)

    Article  MATH  Google Scholar 

  50. Zhao, X., Liew, K.M., Ng, T.Y.: Vibrations of rotating cross-ply laminated circular cylindrical shells with stringer and ring stiffeners. Int. J. Solids Struct. 39(2), 529–545 (2002)

    Article  MATH  Google Scholar 

  51. Ng, T.Y., Li, H., Lam, K.Y.: Generalized differential quadrature for free vibration of rotating composite laminated conical shell with various boundary conditions. Int. J. Mech. Sci. 45(3), 567–587 (2003)

    Article  MATH  Google Scholar 

  52. Sun, S., Chu, S., Cao, D.: Vibration characteristics of thin rotating cylindrical shells with various boundary conditions. J. Sound Vib. 331(18), 4170–4186 (2012)

    Article  Google Scholar 

  53. Hosseini-Hashemi, S., Ilkhani, M.R., Fadaee, M.: Accurate natural frequencies and critical speeds of a rotating functionally graded moderately thick cylindrical shell. Int. J. Mech. Sci. 76, 9–20 (2013)

    Article  Google Scholar 

  54. Talebitooti, M., Daneshjou, K., Talebitooti, R.: Vibration and critical speed of orthogonally stiffened rotating FG cylindrical shell under thermo-mechanical loads using differential quadrature method. J. Therm. Stress. 36(2), 160–188 (2013)

    Article  MATH  Google Scholar 

  55. Tran, M.-T., Nguyen, V.-L.: Vibration analysis of rotating functionally graded cylindrical shells with orthogonal stiffeners. Lat. Am. J. Solids Struct. 13(15), 2652–2669 (2016)

    Google Scholar 

  56. Tran, M-T., Nguyen, V-L.: Free vibration of rotating functionally graded material cylindrical shells with orthogonal stiffeners. In: Proceedings of the Eleventh joint Canada–Japan Workshop on Composites and the first joint Canada–Japan–Vietnam Workshop on Composites. DEStech Publications, Inc., Ho Chi Minh City, Vietnam, (2017)

  57. Quoc, T.H., Huan, D.T., Phuong, H.T.: Vibration characteristics of rotating functionally graded circular cylindrical shell with variable thickness under thermal environment. Int. J. Press. Vessels Pip. 193, 104452 (2021)

    Article  Google Scholar 

  58. Dong, Y.H., Li, Y.H., Chen, D., Yang, J.: Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos. B Eng. 145, 1–13 (2018)

    Article  Google Scholar 

  59. Dong, Y.H., Zhu, B., Wang, Y., Li, Y.H., Yang, J.: Nonlinear free vibration of graded graphene reinforced cylindrical shells: effects of spinning motion and axial load. J. Sound Vib. 437, 79–96 (2018)

    Article  Google Scholar 

  60. Reddy, JN.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis 2003, CRC Press

  61. Thai, H.T., Kim, S.E.: A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128, 70 (2015)

    Article  Google Scholar 

  62. Reddy, J., Liu, C.: A higher-order shear deformation theory of laminated elastic shells. Int. J. Eng. Sci. 23(3), 319–330 (1985)

    Article  MATH  Google Scholar 

  63. Tran, T.T., Tran, V.K., Pham, Q.-H., Zenkour, A.M.: Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation. Compos. Struct. 264, 113737 (2021)

    Article  Google Scholar 

  64. Kirchhoff, G.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. 1850(40), 51–88 (1850)

    Article  Google Scholar 

  65. Love, A.E.H.: The small free vibrations and deformation of a thin elastic shell. Philos. Trans. R. Soc. Lond. 179, 491–546 (1888)

    Article  MATH  Google Scholar 

  66. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18(1), 31–38 (1951)

    Article  MATH  Google Scholar 

  67. Song, Z.G., Zhang, L.W., Liew, K.M.: Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments. Int. J. Mech. Sci. 115–116, 339–347 (2016)

    Article  Google Scholar 

  68. Dung, D.V., Vuong, P.M.: Analytical investigation on buckling and postbuckling of FGM toroidal shell segment surrounded by elastic foundation in thermal environment and under external pressure using TSDT. Acta Mech. 228(10), 3511–3531 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  69. Khoa, N.D., Thiem, H.T., Duc, N.D.: Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal–ceramic–metal layers in thermal environment using Reddy’s third-order shear deformation shell theory. Mech. Adv. Mater. Struct. 26(3), 248–259 (2019)

    Article  Google Scholar 

  70. Dat, N.D., Quan, T.Q., Duc, N.D.: Nonlinear thermal vibration of carbon nanotube polymer composite elliptical cylindrical shells. Int. J. Mech. Mater. Des. 16(2), 331–350 (2020)

    Article  Google Scholar 

  71. Van Do, V.N., Lee, C.-H.: Static bending and free vibration analysis of multilayered composite cylindrical and spherical panels reinforced with graphene platelets by using isogeometric analysis method. Eng. Struct. 215, 110682 (2020)

    Article  Google Scholar 

  72. Vuong, P.M., Duc, N.D.: Nonlinear buckling and post-buckling behavior of shear deformable sandwich toroidal shell segments with functionally graded core subjected to axial compression and thermal loads. Aerosp. Sci. Technol. 106, 106084 (2020)

    Article  Google Scholar 

  73. Long, V. T., Tung, H. V.: Mechanical buckling analysis of thick FGM toroidal shell segments with porosities using Reddy’s higher order shear deformation theory. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1969606

    Article  Google Scholar 

  74. Ninh, D.G., Eslami, H., Viet Hoang, V.N.: Dynamical behaviors of conveying-fluid nanocomposite toroidal shell segments with piezoelectric layer in thermal environment using the Reddy’s third-order shear deformation shell theory. Thin-Walled Struct. 159, 107204 (2021)

    Article  Google Scholar 

  75. Thinh, T.I., Bich, D.H., Tu, T.M., Van Long, N.: Nonlinear analysis of buckling and postbuckling of functionally graded variable thickness toroidal shell segments based on improved Donnell shell theory. Compos. Struct. 243, 112173 (2020)

    Article  Google Scholar 

  76. Vuong, P.M., Duc, N.D.: Nonlinear static and dynamic stability of functionally graded toroidal shell segments under axial compression. Thin-Walled Struct. 155, 106973 (2020)

    Article  Google Scholar 

  77. Dong, D.T., Van Dung, D.: A third-order shear deformation theory for nonlinear vibration analysis of stiffened functionally graded material sandwich doubly curved shallow shells with four material models. J. Sandw. Struct. Mater. 21(4), 1316–1356 (2017)

    Article  Google Scholar 

  78. Talebitooti, M.: Thermal effect on free vibration of ring-stiffened rotating functionally graded conical shell with clamped ends. Mech. Adv. Mater. Struct. 25(2), 155–165 (2018)

    Article  Google Scholar 

  79. Bidzard, A., Malekzadeh, P., Mohebpour, S.: Influences of pressure and thermal environment on nonlinear vibration characteristics of multilayer FG-GPLRC toroidal panels on nonlinear elastic foundation. Compos. Struct. 259, 113503 (2021)

    Article  Google Scholar 

  80. Mustafa, B.A.J., Ali, R.: An energy method for free vibration analysis of stiffened circular cylindrical shells. Comput. Struct. 32(2), 355–363 (1989)

    Article  MATH  Google Scholar 

  81. Nguyen, V.-L., Hoang, T.-P.: Analytical solution for free vibration of stiffened functionally graded cylindrical shell structure resting on elastic foundation. Sn Applied Sciences 1(10), 1150 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Thailand Science Research and Innovation Fund Chulalongkorn University (Grant No. CU_FRB65_ind(11)_159_21_25). The authors also gratefully acknowledge the support provided by the CU Scholarship for ASEAN or Non-ASEAN Countries 2019 awarded to Van-Loi Nguyen and the Thailand Research Fund (Grant No. RTA6280012). Lastly, H.M. Sedighi is grateful to the Research Council of Shahid Chamran University of Ahvaz for its financial support (Grant No. SCU.EM1401.98).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroon Rungamornrat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The entries of \({\mathbf{K}},{\mathbf{M,}}\overline{{\mathbf{M}}} ,{\tilde{\mathbf{M}}}\) in Eq. (31) are given by

$$\begin{aligned} K_{ij}^{11} & = \pi R_{2} \int\limits_{0}^{L} {\left( {A_{11}^{{}} \phi_{i,x}^{u} \phi_{j,x}^{u} + A_{66}^{{}} \frac{{n^{2} }}{{R_{2}^{2} }}\phi_{i}^{u} \phi_{j}^{u} + k_{s} A_{55} \frac{1}{{R_{1}^{2} }}\phi_{i}^{u} \phi_{j}^{u} } \right){\text{d}}x} {;} \\ K_{ij}^{12} & = \pi R_{2} \int\limits_{0}^{L} {\left( {A_{12}^{{}} \frac{n}{{R_{2} }}\phi_{i,x}^{u} \phi_{j}^{v} - A_{66}^{{}} \frac{n}{{R_{2} }}\phi_{i}^{u} \phi_{j,x}^{v} } \right){\text{d}}x} {;} \\ K_{ij}^{13} & = \pi R_{2} \int\limits_{0}^{L} {\left( {A_{11}^{{}} \frac{1}{{R_{1} }}\phi_{i,x}^{u} \phi_{j}^{w} + A_{12}^{{}} \frac{1}{{R_{2} }}\phi_{i,x}^{u} \phi_{j}^{w} - k_{s} A_{55} \frac{1}{{R_{1} }}\phi_{i}^{u} \phi_{j,x}^{w} \, } \right){\text{d}}x} {;} \\ K_{ij}^{14} & = \pi R_{2} \int\limits_{0}^{L} {\left( {B_{11}^{{}} \phi_{i,x}^{u} \phi_{j,x}^{x} + B_{66}^{{}} \frac{{n^{2} }}{{R_{2}^{2} }}\phi_{i}^{u} \phi_{j}^{x} - k_{s} A_{55} \frac{1}{{R_{1} }}\phi_{i}^{u} \phi_{j}^{x} } \right){\text{d}}x} {;} \\ K_{ij}^{15} & = \pi R_{2} \int\limits_{0}^{L} {\left( {B_{12}^{{}} \frac{n}{{R_{2} }}\phi_{i,x}^{u} \phi_{j}^{y} - B_{66}^{{}} \frac{n}{{R_{2} }}\phi_{i}^{u} \phi_{j,x}^{y} } \right){\text{d}}x} {;} \\ K_{ij}^{22} & = \pi R_{2} \int\limits_{0}^{L} {\left( {A_{22}^{{}} \frac{{n^{2} }}{{R_{2}^{2} }}\phi_{i}^{v} \phi_{j}^{v} + A_{66}^{{}} \phi_{i,x}^{v} \phi_{j,x}^{v} + k_{s} A_{44} \frac{1}{{R_{2}^{2} }}\phi_{i}^{v} \phi_{j}^{v} - N_{x}^{T} \phi_{i,x}^{v} \phi_{i,x}^{v} } \right){\text{d}}x} {;} \\ K_{ij}^{23} & = \pi R_{2} \int\limits_{0}^{L} {\left( {A_{12}^{{}} \frac{n}{{R_{1} R_{2} }} + A_{22}^{{}} \frac{n}{{R_{2}^{2} }} + k_{s} A_{44} \frac{n}{{R_{2}^{2} }}} \right)\phi_{i}^{v} \phi_{j}^{w} {\text{d}}x} {;} \\ K_{ij}^{24} & = \pi R_{2} \int\limits_{0}^{L} {\left( {B_{12}^{{}} \frac{n}{{R_{2} }}\phi_{i}^{v} \phi_{j,x}^{x} - B_{66}^{{}} \frac{n}{{R_{2} }}\phi_{i,x}^{v} \phi_{j}^{x} } \right){\text{d}}x} {;} \\ K_{ij}^{25} & = \pi R_{2} \int\limits_{0}^{L} {\left( {B_{22}^{{}} \frac{{n^{2} }}{{R_{2}^{2} }}\phi_{i}^{v} \phi_{j}^{y} + B_{66}^{{}} \phi_{i,x}^{v} \phi_{j,x}^{y} - k_{s} A_{44} \frac{1}{{R_{2} }}\phi_{i}^{v} \phi_{j}^{y} } \right){\text{d}}x} {;} \\ K_{ij}^{33} & = \pi R_{2} \int\limits_{0}^{L} {\left[ {\left( {\frac{{A_{11}^{{}} }}{{R_{1}^{2} }} + 2\frac{{A_{12}^{{}} }}{{R_{1} R_{2} }} + \frac{{A_{22}^{{}} }}{{R_{2}^{2} }}} \right)\phi_{i}^{w} \phi_{j}^{w} + k_{s} A_{44}^{{}} \frac{{n^{2} }}{{R_{2}^{2} }}\phi_{i}^{w} \phi_{j}^{w} + k_{s} A_{55}^{{}} \phi_{i,x}^{w} \phi_{j,x}^{w} - N_{x}^{T} \phi_{i,x}^{w} \phi_{j,x}^{w} } \right]{\text{d}}x} {;} \\ K_{ij}^{34} & = \pi R_{2} \int\limits_{0}^{L} {\left( {\frac{{B_{11}^{{}} }}{{R_{1} }}\phi_{i}^{w} \phi_{j,x}^{x} + \frac{{B_{12}^{{}} }}{{R_{2} }}\phi_{i}^{w} \phi_{j,x}^{x} + k_{s} A_{55}^{{}} \phi_{i,x}^{w} \phi_{j}^{x} } \right){\text{d}}x{;}} \\ K_{ij}^{35} & = \pi R_{2} \int\limits_{0}^{L} {\left( {B_{12}^{{}} \frac{n}{{R_{1} R_{2} }} + B_{22}^{{}} \frac{n}{{R_{2}^{2} }} - k_{s} A_{44}^{{}} \frac{n}{{R_{2} }}} \right)\phi_{i}^{w} \phi_{j}^{y} {\text{d}}x} {;} \\ K_{ij}^{44} & = \pi R_{2} \int\limits_{0}^{L} {\left( {D_{11}^{{}} \phi_{i,x}^{x} \phi_{j,x}^{x} + D_{66}^{{}} \frac{{n^{2} }}{{R_{2}^{2} }}\phi_{i}^{x} \phi_{j}^{x} + k_{s} A_{55}^{{}} \phi_{i}^{x} \phi_{j}^{x} } \right){\text{d}}x} {;} \\ K_{ij}^{45} & = \pi R_{2} \int\limits_{0}^{L} {\left( {D_{12}^{{}} \frac{n}{{R_{2} }}\phi_{i,x}^{x} \phi_{j}^{y} - D_{66}^{{}} \frac{n}{{R_{2} }}\phi_{i}^{x} \phi_{j,x}^{y} } \right){\text{d}}x} {;} \\ K_{ij}^{55} & = \pi R_{2} \int\limits_{0}^{L} {\left( {D_{22}^{{}} \frac{{n^{2} }}{{R_{2}^{2} }}\phi_{i}^{y} \phi_{j}^{y} + D_{66}^{{}} \phi_{i,x}^{y} \phi_{i,x}^{y} + k_{s} A_{44}^{{}} \phi_{i}^{y} \phi_{j}^{y} } \right){\text{d}}x{;}} \\ \end{aligned}$$
(A.1)
$$\begin{aligned} M_{ij}^{11} & = \pi R_{2} J_{0} \int\limits_{0}^{L} {\phi_{i}^{u} \phi_{j}^{u} {\text{d}}x} {;}\;M_{ij}^{22} = \pi R_{2} J_{0} \int\limits_{0}^{L} {\phi_{i}^{v} \phi_{j}^{v} {\text{d}}x} {;}\;M_{ij}^{33} = \pi R_{2} J_{0} \int\limits_{0}^{L} {\phi_{i}^{w} \phi_{j}^{w} {\text{d}}x} {;} \\ M_{ij}^{44} & = \pi R_{2} J_{2} \int\limits_{0}^{L} {\phi_{i}^{x} \phi_{j}^{x} {\text{d}}x} {;}\;M_{ij}^{55} = \pi R_{2} J_{2} \int\limits_{0}^{L} {\phi_{i}^{y} \phi_{j}^{y} {\text{d}}x} {;} \\ M_{ij}^{14} & = \pi R_{2} J_{1} \int\limits_{0}^{L} {\phi_{i}^{u} \phi_{j}^{x} {\text{d}}x} {;}\;M_{ij}^{25} = \pi R_{2} J_{1} \int\limits_{0}^{L} {\phi_{i}^{v} \phi_{j}^{y} {\text{d}}x}; \\ \overline{M}_{ij}^{23} & = \pi R_{2} J_{0} \int\limits_{0}^{L} {\phi_{i}^{v} \phi_{j}^{w} {\text{d}}x} {;}\;\overline{M}_{ij}^{35} = \pi R_{2} J_{1} \int\limits_{0}^{L} {\phi_{i}^{w} \phi_{j}^{y} {\text{d}}x}; \\ \tilde{M}_{ij}^{11} & = n^{2} \pi R_{2}^{{}} J_{0} \int\limits_{0}^{L} {\phi_{i}^{u} \phi_{j}^{u} {\text{d}}x} {;}\;\tilde{M}_{ij}^{22} = n^{2} \pi R_{2} J_{0} \int\limits_{0}^{L} {\phi_{i}^{v} \phi_{j}^{v} {\text{d}}x} ;\\ \tilde{M}_{ij}^{33} & = n^{2} \pi R_{2}^{{}} J_{0} \int\limits_{0}^{L} {\phi_{i}^{w} \phi_{j}^{w} {\text{d}}x} {;}\;\tilde{M}_{ij}^{44} = n^{2} \pi R_{2} J_{2} \int\limits_{0}^{L} {\phi_{i}^{x} \phi_{j}^{x} {\text{d}}x}; \\ \tilde{M}_{ij}^{55} & = n^{2} \pi R_{2}^{{}} J_{2} \int\limits_{0}^{L} {\phi_{i}^{y} \phi_{j}^{y} {\text{d}}x} {;}\;\tilde{M}_{ij}^{14} = n^{2} \pi R_{2}^{{}} J_{1} \int\limits_{\Omega }^{{}} {\phi_{i}^{u} \phi_{j}^{x} {\text{d}}x}; \\ \tilde{M}_{ij}^{25} & = n^{2} \pi R_{2}^{{}} J_{1} \int\limits_{0}^{L} {\phi_{i}^{v} \phi_{j}^{y} {\text{d}}x} {;}\;\tilde{M}_{ij}^{23} = 2n\pi R_{2}^{{}} J_{0} \int\limits_{0}^{L} {\phi_{i}^{v} \phi_{j}^{w} {\text{d}}x}; \\ \tilde{M}_{ij}^{35} & = 2n\pi R_{2}^{{}} J_{1} \int\limits_{0}^{L} {\phi_{i}^{w} \phi_{j}^{y} {\text{d}}x} \\ \end{aligned}$$
(A.2)

where

$$\begin{gathered} J_{0} = \sum\limits_{k = 1}^{NL} {\int\limits_{{z_{k - 1} }}^{{z_{k} }} {\rho_{{{\text{eq}}}}^{\left( k \right)} {(}z{\text{)d}}z} } {;}\;\;\;J_{1} = \sum\limits_{k = 1}^{NL} {\int\limits_{{z_{k - 1} }}^{{z_{k} }} {z\rho_{{{\text{eq}}}}^{\left( k \right)} {(}z{\text{)d}}z} } {;}\;\;\;J_{2} = \sum\limits_{k = 1}^{NL} {\int\limits_{{z_{k - 1} }}^{{z_{k} }} {z^{2} \rho_{{{\text{eq}}}}^{\left( k \right)} {(}z{\text{)d}}z} } ; \hfill \\ \rho_{{{\text{eq}}}}^{{{(}k{)}}} = \rho^{{{(}k{)}}} + \frac{{\rho_{x} }}{{s_{x} }}\frac{{A_{x} }}{h} + \frac{{\rho_{y} }}{{s_{y} }}\frac{{A_{y} }}{h} .\hfill \\ \end{gathered}$$
(A.3)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, VL., Tran, MT., Limkatanyu, S. et al. Reddy’s third-order shear deformation shell theory for free vibration analysis of rotating stiffened advanced nanocomposite toroidal shell segments in thermal environments. Acta Mech 233, 4659–4684 (2022). https://doi.org/10.1007/s00707-022-03347-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03347-8

Navigation