Skip to main content
Log in

Caputo \(\Delta \)-type fractional time-scales Noether theorem of Birkhoffian systems

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new type of Noether theorem with Caputo \(\Delta \)-derivative of Birkhoffian systems is the focus of this paper based upon the fractional time-scales calculus, which constructs a model to unify continuous fractional systems and discrete fractional systems. The Caputo \(\Delta \)-type fractional time-scales Pfaff-Birkhoff principle is given, and its Birkhoff equations are deduced. According to the definition of fractional time-scales Noether symmetry of Birkhoffian systems, its criterion is proved and its Noether theorem is formulated by the generalized Jost method. Furthermore, the corresponding transformation conditions are given to study the relationship among fractional time-scales Birkhoffian systems, Hamiltonian systems and Lagrangian systems. Taking the fractional time-scales Hojman-Urrutia model as an example, the simulation results show the validity of the new Noether theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mei, F.X., Wu, H.B., Zhang, Y.F.: Symmetries and conserved quantities of constrained mechanical systems. Int. J. Dyn. Control 2, 285–303 (2014)

    Article  Google Scholar 

  2. Mei, F.X.: Symmetries and Conserved Quantities of Constrained Mechanical Systems. Beijing Institute of Technology Press, Beijing (2004)

    Google Scholar 

  3. Mei, F.X., Wu, H.B., Li, Y.M.: History of Analytical Mechanics. Science Press, Beijing (2019)

    Google Scholar 

  4. Li, Z.P.: Classical and Quantum Constrained Systems and Their Symmetrical Properties. Beijing University of Technology Press, Beijing (1993)

    Google Scholar 

  5. Djordje, M.: Generalized Noether’s theorem for continuous mechanical systems. Acta Mech. 228(3), 901–917 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Song, J., Zhang, Y.: Noether’s theorems for dynamical systems of two kinds of non-standard Hamiltonians. Acta Mech. 229(1), 285–297 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Capozziello, S., Laurentis, M.D., Odintsov, S.D.: Hamiltonian dynamics and Noether symmetries in extended gravity cosmology. Eur. Phys. J. C 72(7), 1–21 (2012)

    Article  Google Scholar 

  8. Casetta, L., Irschik, H., Pesce, C.P.: A generalization of Noether’s theorem for a non-material volume. Z. Angew. Math. Mech. 96(6), 696–706 (2016)

    Article  MathSciNet  Google Scholar 

  9. Yan, B., Zhang, Y.: Noether’s theorem for fractional Birkhoffian systems of variable order. Acta Mech. 227(9), 2439–2449 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tian, X., Zhang, Y.: Noether’s theorem for fractional Herglotz variational principle in phase space. Chaos. Soliton. Fract. 119, 50–54 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou, Y., Zhang, Y.: Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives. Acta Mech. 231(7), 3017–3029 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  13. Lin, R.M., Ng, T.Y.: Development of a theoretical framework for vibration analysis of the class of problems described by fractional derivatives. Mech. Syst. Signal. Pr. 116, 78–96 (2019)

    Article  Google Scholar 

  14. Yu, C.X., Zhang, J., Chen, Y.M., et al.: A numerical method for solving fractional-order viscoelastic Euler-Bernoulli beams. Chaos. Soliton. Fract. 128, 275–279 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duarte, F., Machado, J.: Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 29(1), 315–342 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma, L.J., Liu, B.: Dynamic analysis and optimal control of a fractional order singular Leslie-Gower prey-predator model. Acta. Math. Sci. 40(5), 356–383 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tatar, N.: Fractional Halanay inequality and application in neural network theory. Acta Math. Sci. 39(6), 1605–1618 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yao, X.Q., Zhong, S.M.: EID-based robust stabilization for delayed fractional-order nonlinear uncertain system with application in memristive neural networks. Chaos. Soliton. Fract. 144, 110705 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. El-Nabulsi, R.A.: Fractional dynamics, fractional weak bosons masses and physics beyond the standard model. Chaos. Soliton. Fract. 41(5), 2262–2270 (2009)

    Article  MathSciNet  Google Scholar 

  20. El-Nabulsi, R.A.: Fractional variational symmetries of Lagrangians, the fractional Galilean transformation and the modified Schrödinger equation. Nonlinear Dyn. 81(1–2), 939–948 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. El-Nabulsi, R.A.: Nonlocal-in-time kinetic energy in nonconservative fractional systems, disordered dynamics, jerk and snap and oscillatory motions in the rotating fluid tube. Int. J. Non-Linear Mech. 93, 65–81 (2017)

    Article  Google Scholar 

  22. El-Nabulsi, R.A.: Dirac equation with position-dependent mass and Coulomb-like field in Hausdorff dimension. Few-Body Syst. 61(25), 1–13 (2020)

    Google Scholar 

  23. El-Nabulsi, R.A.: Saigo-Maeda operators involving the Appell function, real spectra from symmetric quantum Hamiltonians and violation of the second law of thermodynamics for quantum damped oscillators. Int. J. Theor. Phys. 59, 3721–3736 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334(2), 834–846 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ferreira, R.A.C., Malinowska, A.B.: A counterexample to Frederico and Torres’s fractional Noether-type theorem. J. Math. Anal. Appl. 429(2), 1370–1373 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Frederico, G.S.F., Torres, D.F.M.: Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput. 217, 1023–1033 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Cresson, J., Szafrańska, A.: About the Noether’s theorem for fractional Lagrangian systems and a generalization of the classical Jost method of proof. Fract. Calc. Appl. Anal. 22(4), 871–898 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Anerot, B., Cresson, J., Belgacem, K.H., et al.: Noether’s-type theorems on time scales. J. Math. Phys. 61(12), 113502 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bartosiewicz, Z., Torres, D.F.M.: Noether’s theorem on time scales. J. Math. Anal. Appl. 342(2), 1220–1226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bartosiewicz, Z., Martins, N., Torres, D.F.M.: The second Euler-Lagrange equation of variational calculus on time scales. Eur. J. Control 17(1), 9–18 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hilger, S.: Ein maßkettenkalkiilmit anwendung auf zentrumsmannigfaltigkeiten [Ph. D. Thesis], Universität Würzburg, Würzburg, (1988)

  32. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  33. Agarwal, R., Bohner, M., O’Regan, D.: Dynamic equations on time scales: a survey. J. Comput. Appl. Math. 141, 1–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  35. Zhang, Y.: Noether theory for Hamiltonian system on time scales. Chin. Q. Mech. 37(2), 214–224 (2016)

    Google Scholar 

  36. Song, C.J., Zhang, Y.: Conserved quantities for Hamiltonian systems on time scales. Appl. Math. Comput. 313, 24–36 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Jin, S.X., Zhang, Y.: Noether theorem for generalized Chaplygin system on time scales. Indian J. Phys. 93, 883–890 (2019)

    Article  Google Scholar 

  38. Song, C.J., Zhang, Y.: Noether theorem for Birkhoffian systems on time scales. J. Math. Phys. 56, 102701 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tian, X., Zhang, Y.: Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales. Acta Mech. 229(9), 3601–3611 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, G.C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75(1–2), 283–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kheira, M., Torres, D.F.M.: Generalized fractional operators on time scales with application to dynamic equations. Eur. Phys. J. Spec. Top. 226(16–18), 3489–3499 (2017)

    Google Scholar 

  42. Bahaa, G.M., Torres, D.F.M.: Time-fractional optimal control of initial value problems on time scales // Nonlinear Analysis and Boundary Value Problems. Springer, Cham (2019)

    MATH  Google Scholar 

  43. Tian, X., Zhang, Y.: Fractional time-scales Noether theorem with Caputo \(\Delta \) derivatives for Hamiltonian systems. Appl. Math. Comput. 393, 125753 (2021)

    MathSciNet  MATH  Google Scholar 

  44. Sun, Y.J., Shang, Z.J.: Structure-preserving algorithms for Birkhoffian systems. Phys. Lett. A 336(4–5), 358–369 (2005)

    Article  MATH  Google Scholar 

  45. Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoffian System. Beijing Institute of Technology Press, Beijing (1996)

    Google Scholar 

  46. Georgiev, S.G.: Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  47. Yaslan, İ, Liceli, O.: Periodic boundary value problems with Delta Riemann-Liouville fractional derivative on time scales. J. Nonlinear Funct. Anal. 2018, 13 (2018)

    MATH  Google Scholar 

  48. Anastassiou, G.A.: Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 52(3–4), 556–566 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tian, X., Zhang, Y.: Caputo \(\Delta \)-type fractional time-scales Noether theorem. Chin. J. Theor. Appl. Mech. 53(7), 2010–2022 (2021)

    Google Scholar 

  50. Bohner, M.: Calculus of variations on time scales. Dyn. Syst. Appl. 13(3), 339–349 (2004)

    MathSciNet  MATH  Google Scholar 

  51. Hojman, S., Urrutia, L.F.: On the inverse problem of the calculus of variations. J. Math. Phys. 22(9), 1896–1903 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  52. Luo, S.K., Xu, Y.L.: Fractional Birkhoffian mechanics. Acta Mech. 226(3), 829–844 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Song, C.J., Zhang, Y.: Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications. Fract. Calc. Appl. Anal. 21(2), 509–526 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11972241, 11572212); the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_0251); and the Natural Science Foundation of Jiangsu Province (BK20191454).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Zhang, Y. Caputo \(\Delta \)-type fractional time-scales Noether theorem of Birkhoffian systems. Acta Mech 233, 4487–4503 (2022). https://doi.org/10.1007/s00707-022-03338-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03338-9

Navigation