Skip to main content
Log in

Nonlinear lightweight metastructure with effective negative stiffness

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a new type of lightweight metastructure for vibration isolation in small devices is investigated. The metastructure contains periodical repeated units of stiff structure-absorber type. On the basic stiff structure, which is excited with the periodical force, a mass-spring absorber is connected. Mass of the basic structure is neglected. The unit represents a two-degree-of-freedom system described with a differential and an algebraic equation. As the elastic property of the structure and of the spring is nonlinear, both of equations are strongly nonlinear. A new mathematical procedure for solving the problem is developed. The method applies the Ateb function (inverse Beta function), which is the exact solution of the equation with polynomial nonlinearity. For vibration elimination in the resonant region, the ‘effective stiffness’ parameter is introduced. The effective stiffness parameter is required to have a negative value. It is obtained that the region of negative effective stiffness depends on the order and coefficient of nonlinearity. The frequency gap is wider for higher values of order and coefficient of nonlinearity and moves to higher frequencies. Parameters of unit for vibration isolation in a wide range of frequencies are calculated. The obtained results are tested on the one-dimensional lattice. It is proved that the result in negative effective stiffness of the unit corresponds to the lattice. The continuous structure has very good vibration isolation performance and has great potential in the vibration isolation applications for small-scale equipment. Better isolation properties are achieved for high vibration excitation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lim, H., Li, Y., Li, J.: Negative stiffness devices for vibration isolation applications: a review. Adv. Struct. Eng. (2019). https://doi.org/10.1177/1369433219900311

    Article  Google Scholar 

  2. Baduidana, M., Wang, X., Kenfack-Jiotsa, A.: Parameters optimization of series–parallel inerter system with negative stiffness in controlling a single-degree-of-freedom system under base excitation. J. Vib. Control 28(7–8), 864–881 (2022)

    Article  Google Scholar 

  3. Zhang, X., Cao, D., Liu, M., Tian, Y., Tang, J., Jiang, B., Huang, W.: Vibration isolation performance of simply supported beam installed with a negative stiffness device. J. Vib. Control 2022, 1–12 (2022). https://doi.org/10.1177/10775463211069396

    Article  Google Scholar 

  4. Tu, L., Ning, D., Sun, S., Li, W., Huang, H., Dong, M., Du, H.: A novel negative stiffness magnetic spring design for vehicle seat suspension system. Mechatronics 68, 102370 (2020)

    Article  Google Scholar 

  5. Wu, J., Zeng, L., Han, B., Zhou, Y., Luo, X., Li, X., Chen, X., Jiang, W.: Analysis and design of a novel arrayed magnetic spring with high negative stiffness for low-frequency vibration isolation. Int. J. Mech. Sci. 216, 106980 (2022)

    Article  Google Scholar 

  6. Liao, X., Zhang, N., Du, X., Zhang, W.: Theoretical modeling and vibration isolation performance analysis of a seat suspension system based on a negative stiffness structure. Appl. Sci. 11, 6928 (2021). https://doi.org/10.3390/app11156928

    Article  Google Scholar 

  7. Liao, X., Du, X., Li, S.: Design of cab seat suspension system for construction machinery based on negative stiffness structure. Adv. Mech. Eng. 13(8), 1–15 (2021)

    Article  Google Scholar 

  8. Menga, K., Gub, Y., Ma, J., Liu, X., Geng, X., Liu, Y., Liu, X., Zhang, H., Shao, F.: Controllable electromagnetic negative stiffness spring for vibration isolator: Design, analyses and experimental verification. Int. J. Appl. Electromagn. Mech 1, 1–22 (2020)

    Google Scholar 

  9. Nguyen, C.H., Ho, C.M., Ahn, K.K.: An air spring vibration isolator based on a negative-stiffness structure for vehicle seat. Appl. Sci. 11, 11539 (2021)

    Article  Google Scholar 

  10. Shi, X., Zhao, F., Yan, Z., Zhu, S., Li, J.-Y.: High-performance vibration isolation technique using passive negative stiffness and semiactive damping. Comput. Aided Civ. Infrastruct. Eng. 36, 1034–1055 (2021)

    Article  Google Scholar 

  11. Zeng, Z., Zhang, L., Yan, M.: A novel shock absorber with the preload and global negative stiffness for effective shock isolation. Shock. Vib. 2021, 8823422 (2021)

    Google Scholar 

  12. Cveticanin, L., Mester, G.: Theory of acoustic metamaterials and metamaterial beams: an overview. Acta Polytech. Hung. 13(7), 43–62 (2016)

    Google Scholar 

  13. Chen, S., Tan, X., Hu, J., Zhu, S., Wang, B., Wang, L., Jin, Y., Wu, L.: A novel gradient negative stiffness honeycomb for recoverable energy absorption. Compos. B 215, 108745 (2021)

    Article  Google Scholar 

  14. Gao, R., Guo, S., Tian, X., Liu, S.: A negative-stiffness based 1D metamaterial for bidirectional buffering and energy absorption with state recoverable characteristic. Thin-Walled Struct. 169, 108319 (2021)

    Article  Google Scholar 

  15. Chen, S., Tan, X., Hu, J., Wang, B., Wang, L., Zou, Y., Wu, L.: Continuous carbon fiber reinforced composite negative stiffness mechanical metamaterial for recoverable energy absorption. Compos. Struct. 288, 115411 (2022)

    Article  Google Scholar 

  16. Chen, S., Wang, B., Zhu, S., Tan, X., Hu, J., Lian, X., Wang, L., Wu, L.: A novel composite negative stiffness structure for recoverable trapping energy. Compos. A 129, 105697 (2020)

    Article  Google Scholar 

  17. Paradeisiotis, A., Kalderon, M., Antoniadis, I.: Advanced negative stiffness absorber for low-frequency noise insulation of panels. AIP Adv. 11, 065003 (2021)

    Article  Google Scholar 

  18. Dudek, K.K., Gatt, R., Grima, J.N.: 3D composite metamaterial with magnetic inclusions exhibiting negative stiffness and auxetic behavior. Mater. Des. 187, 108403 (2020)

    Article  Google Scholar 

  19. Zhu, S., Tan, X., Chen, S., Wang, B., Ma, L., Wu, L.: Quasi-all-directional negative stiffness metamaterials based on negative rotation stiffness elements. Phys. Status Solidi B 257, 1900538 (2020)

    Article  Google Scholar 

  20. Tan, X., Chen, S., Wang, B., Tang, J., Wang, L., Zhu, S., Yao, K., Xu, P.: Real-time tunable negative stiffness mechanical metamaterial. Extreme Mech. Lett. 41, 100990 (2020)

    Article  Google Scholar 

  21. Meng, H., Huang, X., Chen, Y., Theodossiades, S., Chronopoulos, D.: Structural vibration absorption in multilayered sandwich structures using negative stiffness nonlinear oscillators. Appl. Acoust. 182, 108240 (2021)

    Article  Google Scholar 

  22. Ren, C., Yang, D., Qin, H.: Mechanical performance of multidirectional buckling-based negative stiffness metamaterials: an analytical and numerical study. Materials 11, 1078 (2018)

    Article  Google Scholar 

  23. Chen, B., Chen, L., Du, B., Liu, H., Li, W., Fang, D.: Novel multifunctional negative stiffness mechanical metamaterial structure: Tailored functions of multi-stable and compressive mono-stable. Compos. B 204, 108501 (2021)

    Article  Google Scholar 

  24. Sun, H., Du, X., Pai, R.R.: Theory of metamaterial beams for broadband vibration absorption. J. Intell. Mater. Syst. Struct. 7, 1085–1101 (2010)

    Article  Google Scholar 

  25. Bayat, M., Pakar, I.: Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffness. Earthq. Eng. Eng. Vib. 12(3), 411–420 (2013)

    Article  Google Scholar 

  26. Cveticanin, L., Mester, G., Biro, I., Sarosi, J.: Oscillator with symmetric and asymmetric quadratic nonlinearity. Acta Mech. 227(6), 1727–1742 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, X., Jiang, F.: Operational modal analysis using symbolic regression for a nonlinear vibration system. J. Low Freq. Noise Vib. Active Control 40(1), 120–134 (2021)

    Article  Google Scholar 

  28. Bayat, M., Head, M., Cveticanin, L., Ziehl, P.: Nonlinear analysis of two degree of freedom system with nonlinear springs. Mech. Syst. Signal Process. 171, 108891 (2022)

    Article  Google Scholar 

  29. Cveticanin, L., Zukovic, M., Cveticanin, D.: Steady state vibration of the periodically forced and damped pure nonlinear two-degrees-of-freedom oscillator. J. Theor. Appl. Mech. 57(2), 455–460 (2019)

    Article  MATH  Google Scholar 

  30. Awrejcewicz, J., Chealb, A., Losyeva, N., Puzyrov, V.: Responses of a two degrees-of-freedom system with uncertain parameters in the vicinity of resonance 1:1. Nonlinear Dyn. 101(1), 85–107 (2020)

    Article  Google Scholar 

  31. Herisanu, N., Marinca, V.: A solution procedure combining analytical and numerical approaches to investigate a two-degree-of-freedom vibro-impact oscillator. Mathematics 9(12), 1374 (2021)

    Article  Google Scholar 

  32. Fan, L., He, Y., Chen, X., Zhao, X.: Elastic metamaterial shaft with a stack-like resonator for low-frequency vibration isolation. J. Phys. D Appl. Phys. 53, 105101 (2020)

    Article  Google Scholar 

  33. Duoss, E., Weisgraber, T., Hearon, K., Zhu, C., Small, W., Metz, T., Vericella, J., Barth, H., Kunty, J., Maxwell, R., Soadaccini, C.: Three-dimensional printing of elastomeric, cellular architectures with negative stiffness. Adv. Funct. Mater. 24(31), 4905–4913 (2014)

    Article  Google Scholar 

  34. Vuyk, P., Harne, R.L.: Collapse characterization and shock mitigation by elastomeric metastructures. Extreme Mech. Lett. 37, 100682 (2020)

    Article  Google Scholar 

  35. Hua, J.H., Zhang, Z., Gao, C., Fang, D.: Multistable cylindrical mechanical metastructures: Theoretical and experimental studies. J. Appl. Mech. 86, 071007 (2019)

    Article  Google Scholar 

  36. Zhang, Y., Wang, Q., Tichem, M., van Keulen, F.: Design and characterization of multi-stable mechanical metastructures with level and tilted stable configurations. Extreme Mech. Lett. 34, 100593 (2020)

    Article  Google Scholar 

  37. Cveticanin, L., Zukovic, M., Cveticanin, D.: On the elastic metamaterial with negative effective mass. J. Sound Vib. 436, 295–309 (2018)

    Article  MATH  Google Scholar 

  38. Cveticanin, L., Zukovic, M., Cveticanin, D.: Influence of nonlinear subunits on the resonance frequency band gaps of acoustic metamaterial. Nonlinear Dyn. 93, 1341–1351 (2018)

    Article  Google Scholar 

  39. Cveticanin, L.: Strong Nonlinear Oscillator-Analytical Solutions, Mathematical Engineering, 2nd edn. Springer (2018). ISBN 978-3-319-58825-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cveticanin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cveticanin, L., Zukovic, M., Ninkov, I. et al. Nonlinear lightweight metastructure with effective negative stiffness. Acta Mech 233, 4311–4325 (2022). https://doi.org/10.1007/s00707-022-03322-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03322-3

Navigation