Skip to main content
Log in

Design of a metastructure for vibration isolation with quasi-zero-stiffness characteristics using bistable curved beam

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work designs and analyzes a metastructure-based vibration isolation model to improve small-scale equipment's isolation effectiveness under low-frequency excitations. The feature of the proposed model is the high static and low dynamic stiffness characteristics, also called quasi-zero-stiffness (QZS), possessed by the metastructure under vertical load. The metastructure consists of four parallelly arranged unit cells, and the QZS property is realized in each unit cell by the snap-through behavior of the cosine beam system and the bending-dominated behavior of semicircular arches. The static characteristics of the metastructure are studied analytically and numerically and validated with experimental results. Based on the static analysis results, the dynamic equation of the proposed metastructure is set up in the form of Duffing's equation. The harmonic balance method is used to calculate the frequency response and motion transmissibility of the metastructure at steady state for a harmonic load. The time and frequency responses under the sinusoidal base excitation are examined analytically and numerically, and their results are compared. The simulation results revealed that the proposed QZS metastructure obtains lower transmissibility and wider effective isolation range compared to the equivalent linear model. The parametric study shows that in the low-frequency excitation region, the motion transmissibility increases with decreasing damping ratio, whereas for the effective isolation range, the motion transmissibility increases with increasing damping ratio. Finally, stability analysis is performed to study the unstable region in the frequency response curve. The parametric study indicates that the unstable region reduces with the increase in damping ratio and remains unaffected with varying excitation amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

A :

Amplitude

\(b_{1}\) :

Depth of cosine beam

\(b_{2}\) :

Depth of semicircular arch

dB:

Decibel

\(E_{1}\) :

Young’s modulus of cosine beam

\(E_{2}\) :

Young’s modulus of semicircular arch

FR:

Frequency response

f app :

Fifth-order approximation of dimensionless reaction force

f QZS :

Dimensionless equivalent reaction force

F h :

Reaction force exerted by cosine beam system

F v :

Reaction force exerted by semicircular arch

F NSM :

Restoring force for the negative stiffness mechanism

F QZS :

Equivalent reaction force

h :

Height of cosine beam

Hz:

Hertz

HB:

Harmonic balance

HSLDS:

High-static–low-dynamic stiffness

\(I_{1}\) :

Moment of Inertia of cosine beam

\(I_{2}\) :

Moment of inertia of semicircular arch

k app :

Fifth-order approximation of dimensionless stiffness

k c :

Vertical stiffness of cosine beam system

k h :

Equivalent stiffness of cosine beam system

k v :

Equivalent stiffness of semicircular arch

k s :

Vertical stiffness of semicircular arch

K eq :

Equivalent stiffness of metastructure

\(l_{1}\) :

Length of cosine beam

\(l_{2}\) :

Length of semicircular arch

L 0 :

Original length of cosine beam without any deformation

L 1 :

Projected length of cosine beam on horizontal plane

L sd :

Length of low-stiffness–displacement range

m:

Mass of isolated object

m :

Number of rows of unit cell

mm:

Millimeter

n :

Number of columns of unit cell

NSM:

Negative stiffness mechanism

Q:

Height-to-thickness ratio of cosine beam

QZS:

Quasi-zero stiffness

R:

Radius of semicircular arch

RMS:

Root mean square

t :

Time

T:

Transmissibility

TPU:

Thermoplastic polyurethane

\(t_{1}\) :

Thickness of cosine beam

\(t_{2}\) :

Thickness of semicircular arch

x :

Dimensionless vertical displacement of unit cell from static equilibrium position

X :

Vertical displacement of unit cell form static equilibrium position

y :

Dimensionless relative displacement between base and isolated mass

Y :

Relative displacement between base and isolated mass

z:

Amplitude of wave excitation

\(z_{0}\) :

Dimensionless excitation acceleration amplitude

\(\ddot{Z}\) :

Excitation acceleration amplitude applied at the base

\(\theta\) :

Angle between cosine beam and horizontal plane

\(\mu\) :

Stiffness ratio

\(\gamma\) :

Geometrical parameter

\(\alpha\) :

Coefficient of third-order dimensionless displacement

\(\delta\) :

Coefficient of fifth-order dimensionless displacement

us:

Unstable

c:

Damping coefficient

\(\omega_{{\text{n}}}\) :

Natural frequency of the system

\(\omega\) :

Applied excitation frequency

\(\xi\) :

Damping ratio

\(\tau\) :

Dimensionless time

\(\phi\) :

Phase response

\(\Omega\) :

Frequency ratio

u:

Jump-up

d:

Jump-down

p:

Peak

us:

Unstable

h:

Horizontal

v:

Vertical

app:

Approximation

eq:

Equivalent

\(\bullet\) :

Time derivative

′:

Dimensionless time derivative

References

  1. Allan, G.P., Thomas, L.P.: Harris’ Shock and Vibration Handbook, 6th edn. McGraw-Hill Education, New York (2010)

    Google Scholar 

  2. Wei, X., Zhu, M., Jia, L.: A semi-active control suspension system for railway vehicles with magnetorheological fluid dampers. Veh. Syst. Dyn. 54(7), 982–1003 (2016)

    Google Scholar 

  3. Dalela, S., Balaji, P.S., Jena, D.P.: A review on application of mechanical metamaterials for vibration control. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1892244

    Article  Google Scholar 

  4. Wang, X., Yao, H., Zheng, G.: Enhancing the isolation performance by a nonlinear secondary spring in the Zener model. Nonlinear Dyn. 87(4), 2483–2495 (2017)

    Google Scholar 

  5. Huang, X., et al.: The isolation performance of vibration systems with general velocity-displacement-dependent nonlinear damping under base excitation: numerical and experimental study. Nonlinear Dyn. 85(2), 777–796 (2016)

    MathSciNet  Google Scholar 

  6. Zeqi, L., Liqun, C.: Some recent progresses in nonlinear passive isolations of vibrations. Chin. J. Theor. Appl. Mech. 49(3), 550 (2017)

    Google Scholar 

  7. Balaji, P.S., Karthik SelvaKumar, K.: Applications of nonlinearity in passive vibration control: a review. J. Vib. Eng. Technol. 9(2), 183–213 (2021)

    Google Scholar 

  8. Wang, K., et al.: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: design and experimental validation. Appl. Phys. Lett. 114(25), 251902 (2019)

    Google Scholar 

  9. Antoniadis, I., et al.: Hyper-damping properties of a stiff and stable linear oscillator with a negative stiffness element. J. Sound Vib. 346, 37–52 (2015)

    Google Scholar 

  10. Carrella, A., Brennan, M., Waters, T.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007)

    Google Scholar 

  11. Tang, B., Brennan, M.: On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 81, 207–214 (2014)

    Google Scholar 

  12. Lan, C.-C., Yang, S.-A., Wu, Y.-S.: Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. J. Sound Vib. 333(20), 4843–4858 (2014)

    Google Scholar 

  13. Ahn, H.-J.: Performance limit of a passive vertical isolator using a negative stiffness mechanism. J. Mech. Sci. Technol. 22(12), 2357 (2008)

    Google Scholar 

  14. Carrella, A., Brennan, M., Waters, T.: Optimization of a quasi-zero-stiffness isolator. J. Mech. Sci. Technol. 21(6), 946–949 (2007)

    Google Scholar 

  15. Carrella, A., et al.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009)

    Google Scholar 

  16. Carrella, A., et al.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)

    Google Scholar 

  17. Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315(3), 700–711 (2008)

    Google Scholar 

  18. Ledezma-Ramirez, D.F., et al.: An experimental nonlinear low dynamic stiffness device for shock isolation. J. Sound Vib. 347, 1–13 (2015)

    Google Scholar 

  19. Liu, C., Yu, K.: Accurate modeling and analysis of a typical nonlinear vibration isolator with quasi-zero stiffness. Nonlinear Dyn. 100(3), 2141–2165 (2020)

    Google Scholar 

  20. Fulcher, B.A., et al.: Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vib. Acoust. 136(3), 031009 (2014)

    Google Scholar 

  21. Huang, X., et al.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333(4), 1132–1148 (2014)

    Google Scholar 

  22. Huang, X., et al.: Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: theoretical and experimental study. J. Sound Vib. 345, 178–196 (2015)

    Google Scholar 

  23. Liu, X., Huang, X., Hua, H.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013)

    Google Scholar 

  24. Zheng, Y., et al.: Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mech. Syst. Signal Process. 100, 135–151 (2018)

    Google Scholar 

  25. Dong, G., et al.: Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring. Mech. Syst. Signal Process. 86, 188–203 (2017)

    Google Scholar 

  26. Jing, X., et al.: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mech. Syst. Signal Process. 118, 317–339 (2019)

    Google Scholar 

  27. Ishida, S., Suzuki, K., Shimosaka, H.: Design and experimental analysis of origami-inspired vibration isolator with quasi-zero-stiffness characteristic. J. Vib. Acoust. 139(5), 051004 (2017)

    Google Scholar 

  28. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123(3), 324–332 (2001)

    Google Scholar 

  29. Zhou, J., et al.: Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams. J. Appl. Phys. 121(4), 044902 (2017)

    Google Scholar 

  30. Wang, K., et al.: Mathematical modeling and analysis of a meta-plate for very low-frequency band gap. Appl. Math. Model. 73, 581–597 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Wen, G., et al.: Design, analysis and semi-active control of a quasi-zero stiffness vibration isolation system with six oblique springs. Nonlinear Dyn. 106, 309–321 (2021)

    Google Scholar 

  32. Han, W.-J., et al.: A high-static-low-dynamics stiffness vibration isolator via an elliptical ring. Mech. Syst. Signal Process. 162, 108061 (2022)

    Google Scholar 

  33. Che, K., et al.: Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. J. Appl. Mech. 84(1), 011004 (2017)

    Google Scholar 

  34. Ren, C., Yang, D., Qin, H.: Mechanical performance of multidirectional buckling-based negative stiffness metamaterials: an analytical and numerical study. Materials 11(7), 1078 (2018)

    Google Scholar 

  35. Izard, A.G., et al.: Optimal design of a cellular material encompassing negative stiffness elements for unique combinations of stiffness and elastic hysteresis. Mater. Des. 135, 37–50 (2017)

    Google Scholar 

  36. Tan, X., et al.: Reusable metamaterial via inelastic instability for energy absorption. Int. J. Mech. Sci. 155, 509–517 (2019)

    Google Scholar 

  37. Ha, C.S., Lakes, R.S., Plesha, M.E.: Design, fabrication, and analysis of lattice exhibiting energy absorption via snap-through behavior. Mater. Des. 141, 426–437 (2018)

    Google Scholar 

  38. Tan, X., et al.: A novel cylindrical negative stiffness structure for shock isolation. Compos. Struct. 214, 397–405 (2019)

    Google Scholar 

  39. Yang, H., Ma, L.: Multi-stable mechanical metamaterials with shape-reconfiguration and zero Poisson’s ratio. Mater. Des. 152, 181–190 (2018)

    Google Scholar 

  40. Frenzel, T., et al.: Tailored buckling microlattices as reusable light-weight shock absorbers. Adv. Mater. 28(28), 5865–5870 (2016)

    Google Scholar 

  41. Peng, Z.K., et al.: Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method. Int. J. Nonlinear Mech. 47(10), 1073–1080 (2012)

    Google Scholar 

  42. Qiu, J., Lang, J.H., Slocum, A.H.: A curved-beam bistable mechanism. J. Microelectromech. Syst. 13(2), 137–146 (2004)

    Google Scholar 

  43. Vangbo, M.: An analytical analysis of a compressed bistable buckled beam. Sens. Actuators A 69(3), 212–216 (1998)

    Google Scholar 

  44. Fan, H., et al.: Design of metastructures with quasi-zero dynamic stiffness for vibration isolation. Compos. Struct. 243, 112244 (2020)

    Google Scholar 

  45. Brennan, M., et al.: On the jump-up and jump-down frequencies of the Duffing oscillator. J. Sound Vib. 318(4–5), 1250–1261 (2008)

    Google Scholar 

  46. Hamdan, M.N., Burton, T.D.: On the steady state response and stability of nonlinear oscillators using harmonic balance. J. Sound Vib. 166(2), 255–266 (1993)

    MathSciNet  MATH  Google Scholar 

  47. Worden, K.: Nonlinearity in Structural Dynamics: Detection, Identification and Modelling. CRC Press, New York (2019)

    MATH  Google Scholar 

  48. Ravindra, B., Mallik, A.K.: Performance of nonlinear vibration isolators under harmonic excitation. J. Sound Vib. 170(3), 325–337 (1994)

    MATH  Google Scholar 

  49. Taylor, J.H., Narendra, K.S.: Stability regions for the damped Mathieu equation. SIAM J. Appl. Math. 17(2), 343–352 (1969)

    MathSciNet  MATH  Google Scholar 

  50. Nayfeh, A.H., Mook, D.T., Holmes, P.: Nonlinear Oscillations. Wiley, New York (1980)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the Department of Mechanical Engineering and Industrial Design, National Institute of Technology Rourkela, for extending the facilities for this research.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Balaji.

Ethics declarations

Conflict of interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A. Derivation of Eq. (27)

Substituting the static equilibrium condition (x = 0) in Eq. (25) and equating kQZS to zero

$$ k_{{{\text{QZS}}}} (x) = 8 + 4\mu - \frac{{4\mu \gamma^{2} }}{{\left( {\gamma^{2} + x^{2} } \right)^{3/2} }} $$
(25)
$$ 0 = 8 + 4\mu - \frac{{4\mu \gamma^{2} }}{{\left( {\gamma^{2} + 0} \right)^{3/2} }} $$
(63)
$$ 0 = 8 + 4\mu - \frac{{4\mu \gamma^{2} }}{{\gamma^{3} }} $$
(64)
$$ 0 = 8 + 4\mu \left( {1 - \frac{1}{\gamma }} \right) $$
(65)
$$ \mu \left( {1 - \frac{1}{\gamma }} \right) = - 2 $$
(66)
$$ \mu_{{{\text{QZS}}}} = \frac{ - 2\gamma }{{\gamma - 1}} = \frac{2\gamma }{{1 - \gamma }} $$
(67)
$$ {\text{or}},\quad 0 = 8 + 4\mu \left( {1 - \frac{1}{\gamma }} \right) $$
(65)
$$ \mu \left( {1 - \frac{1}{\gamma }} \right) = - 2 $$
(68)
$$ - \frac{1}{\gamma } = \frac{ - 2}{\mu } - 1 $$
(69)
$$ \frac{1}{\gamma } = \frac{2}{\mu } + 1 $$
(70)
$$ \gamma_{{{\text{QZS}}}} = \frac{\mu }{\mu + 2} $$
(71)
$$ \mu_{{{\text{QZS}}}} = \frac{2\gamma }{{1 - \gamma }}\quad \gamma_{{{\text{QZS}}}} = \frac{\mu }{\mu + 2} {.}$$
(27)

1.2 B. Dependence of geometrical parameter (γ) and stiffness parameter (µ)

Based on Eq. (25), a study is performed to show the variation of kQZS with x for different values of γ and µ based on the three different conditions:

$$ k_{{{\text{QZS}}}} (x) = 8 + 4\mu - \frac{{4\mu \gamma^{2} }}{{\left( {\gamma^{2} + x^{2} } \right)^{3/2} }} $$
(25)
$$ \mu_{{{\text{QZS}}}} = \frac{2\gamma }{{1 - \gamma }}\quad \gamma_{{{\text{QZS}}}} = \frac{\mu }{\mu + 2} $$
(27)

B.i. Let’s consider \(\mu\) as some constant value to analyze the dependency of \(\gamma\) on Eq. (25).

Assume \(\mu = 2\), then \(\gamma_{{{\text{QZS}}}} = 0.5\) (from Eq. 27). Here, three different cases are discussed: (a) \(\gamma = \gamma_{{{\text{QZS}}}} = 0.5\), (b) \(\gamma = 0.6 > \gamma_{{{\text{QZS}}}}\), (c) \(\gamma = 0.4 < \gamma_{{{\text{QZS}}}}\).

A curve is plotted in Fig. 31 based on Eq. (25) for comparing the three cases. It can be observed that for \(\gamma = \gamma_{{{\text{QZS}}}}\), the equivalent stiffness is zero at the static equilibrium position (x = 0). For \(\gamma < \gamma_{{{\text{QZS}}}}\), the equivalent stiffness becomes negative at static equilibrium position making the system unstable. For \(\gamma > \gamma_{{{\text{QZS}}}}\), the equivalent stiffness becomes positive, and the QZS property is lost.

Fig. 31
figure 31

Stiffness–displacement curve of metastructure based on Eq. (25) for varying γ, when μ = 2

It can be observed that the system is unstable for the condition \(\gamma < \gamma_{{{\text{QZS}}}}\).

B.ii. Let’s consider \(\gamma\) as some constant value to analyze the dependency of \(\mu\) on Eq. (25).

Assume \(\gamma = 0.5\), then \(\mu_{{{\text{QZS}}}} = 2\) (from Eq. 27). Here, three different cases are discussed: (a) \(\mu = \mu_{{{\text{QZS}}}} = 2\), (b) \(\mu = 2.5 > \mu_{{{\text{QZS}}}}\), (c) \(\mu = 1.5 < \mu_{{{\text{QZS}}}}\).

A curve is shown in Fig. 32 based on Eq. (25) for comparing the three cases. It can be observed that for \(\mu = \mu_{{{\text{QZS}}}}\), the equivalent stiffness is zero at the static equilibrium position (x = 0). For \(\mu > \mu_{{{\text{QZS}}}}\), the equivalent stiffness becomes negative at static equilibrium position making the system unstable. For \(\mu < \mu_{{{\text{QZS}}}}\), the equivalent stiffness becomes positive, and the QZS property is lost.

Fig. 32
figure 32

Stiffness–displacement curve of metastructure based on Eq. (25) for varying μ, when γ = 0.5

It can be observed that the system is unstable for the condition \(\mu > \mu_{{{\text{QZS}}}}\).

B.iii. Equation (27) shows the relation between \(\mu\) and \(\gamma\), i.e.,

$$ \mu_{{{\text{QZS}}}} = \frac{2\gamma }{{1 - \gamma }}\quad \gamma_{{{\text{QZS}}}} = \frac{\mu }{\mu + 2} $$
(27)

From Fig. 5a and Eq. (18), it can be observed that

$$ \gamma = \frac{{L_{1} }}{{L_{0} }} = \cos \theta $$
(72)

As it is known that the range of cosine varies from 0 to 1, the extreme values of \(\gamma\) are 0 and 1. By substituting these values of \(\gamma\) in Eq. (27), we can observe that

$$ {\text{when }}\gamma_{\min } = 0,\mu_{{{\text{QZS}}}} = 0\,{\text{and}}\,{\text{when}}\gamma_{\max } = 1,\mu_{{{\text{QZS}}}} = {\text{undefined}} $$
(73)

Therefore, it can be seen that \(\mu\) achieves singularity at \(\gamma = 1\). The conditions shown in Eq. (73) are plotted in Fig. 33. It can be observed from the curve that for \(\gamma_{\min } = 0\), the system behaves as an equivalent linear isolator with equivalent QZS equal to 8, and for \(\gamma_{\max } = 1\), the value of equivalent QZS remains constant as zero throughout, which is practically difficult to achieve.

Fig. 33
figure 33

Stiffness–displacement curve of metastructure based on Eq. (25) plotted for two different conditions obtained from Eq. (73) i.e., (i) \(\gamma_{\min } = 0\) and (ii) \(\gamma_{\max } = 1\)

The limiting value obtained for \(\gamma\) can be used to find the limiting conditions for \(\mu\) as well; Eq. (27) leads to

$$ 0 < \frac{\mu }{\mu + 2} < 1 $$
(74)

From Eq. (74), it can be observed that

$$ \mu > 0 $$
(75)

As the stiffness cannot be negative, \(\mu\) should always hold the condition mentioned in Eq. (75), and also \(\mu \ne 0\), as it will lead the model to linear condition. A stiffness–displacement curve (shown in Fig. 

Fig. 34
figure 34

Stiffness–displacement curve of metastructure based on Eq. (25) plotted for four different conditions of \(\mu\) satisfying Eq. (27)

34) based on Eq. (25) is plotted for four different conditions of \(\mu\) satisfying Eq. (27). It can be observed from the curve that \(k_{{{\text{QZS}}}} = 0\) is achieved at static equilibrium position (x = 0) for all the four conditions of \(\mu\), therefore satisfying the QZS criterion.

Hence, it can be observed from the above discussions that the system is unstable for \(\gamma < \gamma_{{{\text{QZS}}}}\) and \(\mu > \mu_{{{\text{QZS}}}}\). The metastructure will hold the QZS property when \(0 < \gamma < 1\) and \(\mu > 0\). The singularity for \(\mu\) is achieved when \(\gamma_{QZS} = 1\).

1.3 C. Derivation of Eq. (29)

$$ k_{{{\text{QZS}}}} (x) = 8 + 4\mu - \frac{{4\mu \gamma^{2} }}{{\left( {\gamma^{2} + x^{2} } \right)^{3/2} }} $$
(25)

Satisfying the condition \(k_{{{\text{QZS}}}} \left( x \right) < 8\) from Eq. (28) and substituting \(\mu_{{{\text{QZS}}}} = \frac{2\gamma }{{1 - \gamma }}\) from Eq. (27), Eq. (25) can be rewritten as

$$ k_{{{\text{QZS}}}} (x) = 8 + 4\mu - \frac{{4\mu \gamma^{2} }}{{\left( {\gamma^{2} + x^{2} } \right)^{3/2} }} < 8 $$
(76)
$$ 8 + 4\left( {\frac{2\gamma }{{1 - \gamma }}} \right) - \frac{{4\left( {\frac{2\gamma }{{1 - \gamma }}} \right)\gamma^{2} }}{{\left( {\gamma^{2} + x^{2} } \right)^{3/2} }} < 8 $$
(77)
$$ 4\left( {\frac{2\gamma }{{1 - \gamma }}} \right) - \frac{{4\left( {\frac{2\gamma }{{1 - \gamma }}} \right)\gamma^{2} }}{{\left( {\gamma^{2} + x^{2} } \right)^{3/2} }} < 0 $$
(78)
$$ 1 - \frac{{\gamma^{2} }}{{\left( {\gamma^{2} + x^{2} } \right)^{3/2} }} < 0 $$
(79)
$$ \frac{{\gamma^{2} }}{{\left( {\gamma^{2} + x^{2} } \right)^{3/2} }} > 1 $$
(80)
$$ \left( {\gamma^{2} + x^{2} } \right)^{3/2} < \gamma^{2} $$
(81)
$$ x^{2} < \gamma^{4/3} - \gamma^{2} $$
(82)
$$ x^{2} < \gamma^{4/3} - \gamma^{{\left( {4/3} \right) + \left( {2/3} \right)}} $$
(83)
$$ x^{2} < \gamma^{4/3} \left( {1 - \gamma^{2/3} } \right) $$
(84)
$$ \left| x \right| < \gamma^{2/3} \sqrt {\left( {1 - \gamma^{2/3} } \right)} {.}$$
(29)

1.4 D. Derivation of Eq. (35)

From Eq. (34), Taylor series expansion is

$$ f\left( x \right) = f\left( {x_{o} } \right) + \sum\limits_{n = 1}^{N} {\frac{{f^{n} \left( {x_{o} } \right)}}{n!}\left( {x - x_{o} } \right)^{n} } $$
(34)

Here,

$$ f_{{{\text{QZS}}}} (x) = 8x - 4\mu \left( {\frac{1}{{\sqrt {\gamma^{2} + x^{2} } }} - 1} \right)x $$
(24)

Finding the derivatives of \(f\left( {x_{0} } \right)\)

$$ f(x_{0} ) = 8x_{0} - 4\mu \left( {\frac{{x_{0} }}{{\sqrt {\gamma^{2} + x_{0}^{2} } }} - x_{0} } \right) $$
(85)
$$ f^{\prime}\left( {x_{0} } \right) = 8 + 4\mu - \frac{{4\mu \gamma^{2} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{3/2} }} $$
(86)
$$ f^{\prime\prime}\left( {x_{0} } \right) = \frac{{12\mu x_{0} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{3/2} }} - \frac{{12\mu x_{0}^{3} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{5/2} }} $$
(87)
$$ f^{\prime\prime\prime}\left( {x_{0} } \right) = \frac{12\mu }{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{3/2} }} - \frac{{72\mu x_{0}^{2} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{5/2} }} + \frac{{60\mu x_{0}^{4} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{7/2} }} $$
(88)
$$ f^{iv} \left( {x_{0} } \right) = \frac{{600\mu x_{0}^{3} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{7/2} }} - \frac{{420\mu x_{0}^{5} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{9/2} }} - \frac{{180\mu x_{0} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{5/2} }} $$
(89)
$$ f^{v} \left( {x_{0} } \right) = \frac{{2700\mu x_{0}^{2} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{7/2} }} - \frac{180\mu }{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{5/2} }} - \frac{{6300\mu x_{0}^{4} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{9/2} }} + \frac{{3780\mu x_{0}^{6} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{11/2} }} $$
(90)
$$ f^{vi} \left( {x_{0} } \right) = \frac{{79380\mu x_{0}^{5} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{11/2} }} - \frac{{44100\mu x_{0}^{3} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{9/2} }} - \frac{{41580\mu x_{0}^{7} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{13/2} }} + \frac{{6300\mu x_{0} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{7/2} }} $$
(91)
$$ f^{vii} \left( {x_{0} } \right) = \frac{6300\mu }{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{7/2} }} - \frac{{176400\mu x_{0}^{2} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{9/2} }} + \frac{{793800\mu x_{0}^{4} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{11/2} }} - \frac{{1164240\mu x_{0}^{6} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{13/2} }} + \frac{{540540\mu x_{0}^{8} }}{{\left( {\gamma^{2} + x_{0}^{2} } \right)^{15/2} }} $$
(92)

Substituting \(x_{0} = 0\) in Eq. (92),

$$ f\left( 0 \right) = 0\quad f^{\prime}\left( 0 \right) = 8 + 4\mu \left( {1 - \frac{1}{\gamma }} \right)\quad f^{\prime\prime}\left( 0 \right) = 0\quad f^{\prime\prime\prime}\left( 0 \right) = \frac{12\mu }{{\gamma^{3} }} $$
(93)
$$ f^{iv} \left( 0 \right) = 0\quad f^{v} \left( 0 \right) = - \frac{180\mu }{{\gamma^{5} }}\quad f^{vi} \left( 0 \right) = 0\quad f^{vii} \left( 0 \right) = - \frac{6300\mu }{{\gamma^{7} }} $$
(94)

By expanding Eq. (24) using Eq. (34), the expression for the force–displacement can be approximated as Eq. (35):

$$ f\left( x \right) = \left[ {8 + 4\mu \left( {\frac{\gamma - 1}{\gamma }} \right)} \right]x + \frac{2\mu }{{\gamma^{3} }}x^{3} - \frac{3\mu }{{2\gamma^{5} }}x^{5} + \frac{5\mu }{{4\gamma^{7} }}x^{7} {.}$$
(35)

1.5 E. Derivation of Eq. (49)

First representing Eq. (47a) and (47b)

$$ - \Omega^{2} A + \left( {\frac{3}{4}\alpha A^{3} } \right) + \left( {\frac{5}{8}\delta A^{5} } \right) = - z_{0} \cos \left( \phi \right) $$
(47a)
$$ - 2\xi A\Omega = - z_{0} \sin \left( \phi \right) $$
(47b)

Squaring and adding Eq. (47a) and (47b), and thereafter eliminating \(\phi\),

$$ \Omega^{4} A^{2} + \frac{9}{16}\alpha^{2} A^{6} + \frac{25}{{64}}\delta^{2} A^{10} - \frac{3}{2}\Omega^{2} \alpha A^{4} - \frac{5}{4}\Omega^{2} \delta A^{6} + \frac{15}{{16}}\delta \alpha A^{8} + 4\xi^{2} \Omega^{2} A^{2} = z_{0}^{2} $$
(95)
$$ \Omega^{4} A^{2} + \Omega^{2} \left[ {4\xi^{2} A^{2} - \frac{3}{2}\alpha A^{4} - \frac{5}{4}\delta A^{6} } \right] + \left[ {\frac{9}{16}\alpha^{2} A^{6} + \frac{25}{{64}}\delta^{2} A^{10} \frac{15}{{16}}\delta \alpha A^{8} - z_{0}^{2} } \right] = 0 $$
(96)

Let, \(\Omega^{2} = w\)

$$ w^{2} A^{2} + w\left[ {4\xi^{2} A^{2} - \frac{3}{2}\alpha A^{4} - \frac{5}{4}\delta A^{6} } \right] + \left[ {\frac{9}{16}\alpha^{2} A^{6} + \frac{25}{{64}}\delta^{2} A^{10} \frac{15}{{16}}\delta \alpha A^{8} - z_{0}^{2} } \right] = 0 $$
(97)
$$ w = - \frac{b}{2a} \pm \frac{{\sqrt {b^{2} - 4ac} }}{2a} $$
(98)
$$ w = \left( { - 2\xi^{2} + \frac{3}{4}\alpha A^{2} + \frac{5}{8}\delta A^{4} } \right) \pm \sqrt {\left( {2\xi^{2} - \frac{3}{4}\alpha A^{2} - \frac{5}{8}\delta A^{4} } \right)^{2} - \left( {\frac{9}{16}\alpha^{2} A^{4} + \frac{25}{{64}}\delta^{2} A^{8} + \frac{15}{{16}}\delta \alpha A^{6} - \frac{{z_{0}^{2} }}{{A^{2} }}} \right)} $$
(99)

Substituting, \(w = \Omega^{2}\)

$$ \begin{gathered} \Omega = \pm \left\{ {\left( {\frac{3}{4}\alpha A^{2} + \frac{5}{8}\delta A^{4} - 2\xi^{2} } \right) \pm \left[ {\left( { - \frac{3}{4}\alpha A^{2} - \frac{5}{8}\delta A^{4} + 2\xi^{2} } \right)^{2} - \left( {\frac{9}{16}\alpha^{2} A^{4} + \frac{25}{{64}}\delta^{2} A^{8} + \frac{15}{{16}}\delta \alpha A^{6} - \frac{{z_{0}^{2} }}{{A^{2} }}} \right)} \right]^{1/2} } \right\}^{1/2} \hfill \\ \hfill \\ \end{gathered} {.}$$
(49)

1.6 F. Derivation of Eqs. (50), (51), (52), and (53)

At the peak resonance point, both the intersections coincide with each other, i.e., Ω1 became equal to Ω2 of Eq. (49).

Considering only the real part, Ω1 and Ω2 can be written as

$$ \Omega_{1} = \left\{ {\left( {\frac{3}{4}\alpha A^{2} + \frac{5}{8}\delta A^{4} - 2\xi^{2} } \right) + \left[ {\left( { - \frac{3}{4}\alpha A^{2} - \frac{5}{8}\delta A^{4} + 2\xi^{2} } \right)^{2} - \left( {\frac{9}{16}\alpha^{2} A^{4} + \frac{25}{{64}}\delta^{2} A^{8} + \frac{15}{{16}}\delta \alpha A^{6} - \frac{{z_{0}^{2} }}{{A^{2} }}} \right)} \right]^{1/2} } \right\}^{1/2} $$
(49a)
$$ \Omega_{2} = \left\{ {\left( {\frac{3}{4}\alpha A^{2} + \frac{5}{8}\delta A^{4} - 2\xi^{2} } \right) - \left[ {\left( { - \frac{3}{4}\alpha A^{2} - \frac{5}{8}\delta A^{4} + 2\xi^{2} } \right)^{2} - \left( {\frac{9}{16}\alpha^{2} A^{4} + \frac{25}{{64}}\delta^{2} A^{8} + \frac{15}{{16}}\delta \alpha A^{6} - \frac{{z_{0}^{2} }}{{A^{2} }}} \right)} \right]^{1/2} } \right\}^{1/2} $$
(49b)

Equating Eq. (49a) and (49b),

$$ 2\left[ {\left( { - \frac{3}{4}\alpha A^{2} - \frac{5}{8}\delta A^{4} + 2\xi^{2} } \right)^{2} - \left( {\frac{9}{16}\alpha^{2} A^{4} + \frac{25}{{64}}\delta^{2} A^{8} + \frac{15}{{16}}\delta \alpha A^{6} - \frac{{z_{0}^{2} }}{{A^{2} }}} \right)} \right]^{1/2} = 0 $$
(100)
$$ \frac{9}{16}\alpha^{2} A^{4} + \frac{25}{{64}}\delta^{2} A^{8} + 4\xi^{4} + \frac{15}{{16}}\delta \alpha A^{6} - 3\alpha A^{2} \xi^{2} - \frac{5}{2}\delta A^{4} \xi^{2} - \frac{9}{16}\alpha^{2} A^{4} - \frac{25}{{64}}\delta^{2} A^{8} - \frac{15}{{16}}\delta \alpha A^{6} + \frac{{z_{0}^{2} }}{{A^{2} }} = 0 $$
(101)
$$ 4\xi^{4} - 3\alpha A^{2} \xi^{2} - \frac{5}{2}\delta A^{4} \xi^{2} + \frac{{z_{0}^{2} }}{{A^{2} }} = 0 $$
(102)
$$ 3\alpha A^{4} + \frac{5}{2}\delta A^{6} - 4\xi^{2} A^{2} - \frac{{z_{0}^{2} }}{{\xi^{2} }} = 0 $$
(103)

Denoting A as peak amplitude (Ap)

$$ \frac{5}{2}\delta A_{{\text{p}}}^{6} + 3\alpha A_{{\text{p}}}^{4} - 4\xi^{2} A_{{\text{p}}}^{2} - \frac{{z_{0}^{2} }}{{\xi^{2} }} = 0 $$
(50)

At this peak resonance, peak frequency (\(\Omega_{{\text{p}}}\)) occurs, using Eq. (49) to derive the relation of \(\Omega_{{\text{p}}}\). As it is clear that, at resonance condition, the nested square root of Eq. (49) is zero, so \(\Omega_{{\text{p}}}\) can be calculated as

$$ \Omega_{1} = \left\{ {\left( {\frac{3}{4}\alpha A_{{\text{p}}}^{2} + \frac{5}{8}\delta A_{{\text{p}}}^{4} - 2\xi^{2} } \right) + 0} \right\}^{1/2} $$
(104)
$$ \Omega_{2} = \left\{ {\left( {\frac{3}{4}\alpha A_{{\text{p}}}^{2} + \frac{5}{8}\delta A_{{\text{p}}}^{4} - 2\xi^{2} } \right) + 0} \right\}^{1/2} $$
(105)
$$ \Omega_{p} = \sqrt {\frac{3}{4}\alpha A_{{\text{p}}}^{2} + \frac{5}{8}\delta A_{{\text{p}}}^{4} - 2\xi^{2} } $$
(51)

Equating Eq. (51) to zero,

$$ \Omega_{{\text{p}}} = \sqrt {\frac{3}{4}\alpha A_{{\text{p}}}^{2} + \frac{5}{8}\delta A_{{\text{p}}}^{4} - 2\xi^{2} } = 0 $$
(106)
$$ \frac{5}{8}\delta A_{{\text{p}}}^{4} + \frac{3}{4}\alpha A_{{\text{p}}}^{2} - 2\xi^{2} = 0 $$
(107)
$$ \frac{5}{8}\delta \left( {A_{{\text{p}}}^{2} } \right)^{2} + \frac{3}{4}\alpha \left( {A_{{\text{p}}}^{2} } \right) - 2\xi^{2} = 0 $$
(108)
$$ A_{{\text{p}}}^{2} = \frac{{\left( { - \frac{3}{4}\alpha } \right) \pm \sqrt {\left( {\frac{3}{4}\alpha } \right)^{2} + 5\delta \xi^{2} } }}{{\frac{5}{4}\delta }} $$
(109)
$$ A_{{\text{p}}}^{2} = \frac{1}{\delta }\left( {\sqrt {\frac{9}{25}\alpha^{2} + \frac{16}{5}\delta \xi^{2} } - \frac{3}{5}\alpha } \right) $$
(52)

Substituting Eq. (52) into Eq. (50) and ignoring the higher-order amplitude term,

$$ z_{0}^{2} = 4\xi^{4} \frac{1}{\delta }\left( {\sqrt {\frac{9}{25}\alpha^{2} + \frac{16}{5}\delta \xi^{2} } - \frac{3}{5}\alpha } \right) $$
(110)
$$z_{0} = 2\xi^{2} \sqrt{ {{\frac{1}{\delta }}} \left({\sqrt {\frac{9}{25}\alpha^{2} + \frac{16}{5}\delta \xi^{2} } - \frac{3\alpha }{{5\delta }}}\right)}{.}$$
(53)

1.7 G. Derivation of Eqs. (55) and (56)

Considering Eq. (54),

$$ T = \frac{{\sqrt {\left( {\Omega^{4} A^{2} } \right) - (2\Omega^{2} Az_{0} \cos \phi ) + z_{0}^{2} } }}{{z_{0} }} $$
(54)

Finding out the value of \(\cos \left( \phi \right)\) form Eq. (47a), and substituting in Eq. (54),

$$ \cos \left( \phi \right) = - \frac{{ - \Omega^{2} A + \left( {\frac{3}{4}\alpha A^{3} } \right) + \left( {\frac{5}{8}\delta A^{5} } \right)}}{{z_{0} }} $$
(111)
$$ T = \frac{{\sqrt {\left( {\Omega^{4} A^{2} } \right) - (2\Omega^{2} Az_{0} \cos \phi ) + z_{0}^{2} } }}{{z_{0} }} $$
(112)
$$ T = \frac{{\sqrt {\left( {\Omega^{4} A^{2} } \right) + \left( { - 2\Omega^{4} A^{2} + \left( {\frac{3}{2}\Omega^{2} \alpha A^{4} } \right) + \left( {\frac{5}{4}\Omega^{2} \delta A^{6} } \right)} \right) + z_{0}^{2} } }}{{z_{0} }} $$
(113)
$$ T = \sqrt { - \frac{{\Omega^{4} A^{2} }}{{z_{0}^{2} }} + \frac{{\frac{3}{2}\Omega^{2} \alpha A^{4} }}{{z_{0}^{2} }} + \frac{{\frac{5}{4}\Omega^{2} \delta A^{6} }}{{z_{0}^{2} }} + 1} $$
(114)
$$ T = \sqrt {\left( {\frac{\Omega A}{{z_{0} }}} \right)^{2} \left( {\frac{5}{4}\delta A^{4} + \frac{3}{2}\alpha A^{2} - \Omega^{2} } \right) + 1} $$
(55)

By substituting the value of \(\Omega\) as \(\Omega_{{\text{p}}}\) from Eq. (50) and \(A\) as \(A_{{\text{p}}}\), the value of peak transmissibility \(T_{{\text{p}}}\) can be obtained:

$$ \Omega = \Omega_{{\text{p}}} = \sqrt {\frac{3}{4}\alpha A_{{\text{p}}}^{2} + \frac{5}{8}\delta A_{{\text{p}}}^{4} - 2\xi^{2} } $$
(115)
$$ A^{2} = A_{{\text{p}}}^{2} = \frac{1}{\delta }\left( {\sqrt {\frac{9}{25}\alpha^{2} + \frac{16}{5}\delta \xi^{2} } - \frac{3}{5}\alpha } \right) $$
(116)
$$ T_{{\text{p}}} = \sqrt {\frac{{A_{{\text{p}}}^{2} }}{{z_{0}^{2} }}\left[ {\left( {\frac{5}{8}\delta A_{{\text{p}}}^{2} + \frac{3}{4}\alpha } \right)^{2} A_{{\text{p}}}^{4} - 4\xi^{4} } \right] + 1}{.} $$
(56)

1.8 H. Derivation of Eqs. (59), (61), and (62)

Substituting Eq. (58) into Eq. (43),

$$ y( \tau ) = A\cos \left( {\Omega \tau + \phi } \right) + \varepsilon ( \tau ) $$
(58)
$$ y^{\prime\prime} + 2\xi y^{\prime} + \alpha y^{3} + \delta y^{5} = - z_{0} \cos \left( {\Omega \tau } \right) $$
(43)

Finding out the value of variables,

$$ \Omega \tau + \phi = \theta $$
(117)
$$ - z_{0} \cos \left( {\Omega \tau } \right) = - z_{0} \cos \theta \cos \phi - z_{0} \sin \theta \sin \phi $$
(118)
$$ y( \tau ) = A\cos \left( {\Omega \tau + \phi } \right) + \varepsilon ( \tau ) $$
(119)
$$ y^{\prime}( \tau ) = - A\Omega \sin \theta + \varepsilon^{\prime}( \tau ) $$
(120)
$$ y^{\prime\prime} = - A\Omega^{2} \cos \theta + \varepsilon^{\prime\prime}( \tau ) $$
(121)

Ignoring the term of order higher than \(O\left( {\varepsilon^{2} } \right)\), and also assuming a harmonic response,

$$ y^{3} = \left( {A^{3} \cos^{3} \theta + 3\varepsilon A^{2} \cos^{2} \theta } \right) $$
(122)
$$ \cos^{3} \theta = \frac{3}{4}\cos \theta $$
(123)
$$ \cos^{2} \theta = \frac{\cos 2\theta + 1}{2} $$
(124)
$$ y^{3} = \left( {A^{3} \frac{3}{4}\cos \theta + 3\varepsilon A^{2} \frac{\cos 2\theta + 1}{2}} \right) $$
(125)

Substituting all these values into Eq. (43), and performing the first-order perturbation analysis by ignoring the term of order higher than \( O(\epsilon^2 )\), and also assuming a harmonic response, the equation of motion can be expressed in the form of

$$ \varepsilon^{\prime\prime} + 2\mu \varepsilon^{\prime} + \left( {p - 2q\cos 2\theta } \right)\varepsilon = 0 $$
(59)

Here,

$$ p = \frac{{3\alpha A^{2} }}{{2}{\Omega^{2} }},\quad q = - \frac{{3\alpha A^{2} }}{{4\Omega^{2} }},\quad \mu = \frac{\xi }{\Omega } $$
(60)

The solution of Eq. (59) is unstable if it lies outside the parabola:

$$ p = 1 \pm \sqrt {q^{2} - 4\mu^{2} } $$
(61)

By substituting Eq. (60) into Eq. (61),

$$ \frac{{3\alpha A^{2} }}{{2\Omega^{2} }} = 1 \pm \sqrt {\left( { - \frac{{3\alpha A^{2} }}{{4\Omega^{2} }}} \right)^{2} - 4\left( {\frac{\xi }{\Omega }} \right)^{2} } $$
(126)
$$ 3\alpha A^{2} = 2\Omega^{2} \pm \sqrt {\left( {\frac{{9\alpha^{2} A^{4} }}{4}} \right) - 16\xi^{2} \Omega^{2} } $$
(127)
$$ 3\alpha A^{2} - 2\Omega^{2} = \pm \sqrt {\left( {\frac{{9\alpha^{2} A^{4} }}{4}} \right) - 16\xi^{2} \Omega^{2} } $$
(128)
$$ 9\alpha^{2} A^{4} + 4\Omega^{4} - 12\alpha A^{2} \Omega^{2} = \frac{{9\alpha^{2} A^{4} }}{4} - 16\xi^{2} \Omega^{2} $$
(129)
$$ 4\Omega^{4} + \frac{{27\alpha^{2} A^{4} }}{4} + \Omega^{2} \left( {16\xi^{2} - 12\alpha A^{2} } \right) = 0 $$
(130)
$$ \Omega^{4} + \Omega^{2} \left( {4\xi^{2} - 3\alpha A^{2} } \right) + \frac{{27\alpha^{2} A^{4} }}{16} = 0 $$
(131)
$$ \Omega_{{{\text{us}}1}} = \sqrt {\frac{3}{2}\alpha A^{2} - 2\xi^{2} + \frac{1}{2}\sqrt {\left( {4\xi^{2} - 3\alpha A^{2} } \right)^{2} - \frac{27}{4}\alpha^{2} A^{4} } } $$
(62a)
$$ \Omega_{{{\text{us}}2}} = \sqrt {\frac{3}{2}\alpha A^{2} - 2\xi^{2} - \frac{1}{2}\sqrt {\left( {4\xi^{2} - 3\alpha A^{2} } \right)^{2} - \frac{27}{4}\alpha^{2} A^{4} } } . $$
(62b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalela, S., Balaji, P.S. & Jena, D.P. Design of a metastructure for vibration isolation with quasi-zero-stiffness characteristics using bistable curved beam. Nonlinear Dyn 108, 1931–1971 (2022). https://doi.org/10.1007/s11071-022-07301-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07301-0

Keywords

Navigation