Skip to main content
Log in

Propagation of SH-waves in inhomogeneous piezoelectric/piezomagnetic half-space with circular inclusion

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this article, the dynamic characteristics of a circular inclusion in an inhomogeneous piezoelectric/piezomagnetic half-space with propagating anti-plane shear waves are studied. The exponential distribution of material parameters along the coordinate axis is considered. The Helmholtz equation includes variable coefficients due to inhomogeneity. First, the Helmholtz equation is transformed into standard form by introducing new variables. Next, integral equations with respective boundary conditions are composed and solved by orthogonal function expansion and effective truncation techniques. Obtained results enable to understand the influence on the dynamic stress concentration factor as well as the electric and magnetic field intensities under proper conditions. The conclusions of this article are verified by comparing the analytical solutions to the ones obtained by finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pao, Y.H., Mow, C.C.: Diffraction of Elastic Waves and Dynamic Stress Concentrations, pp. 208–681. Crane and Russak, New York (1973)

    Google Scholar 

  2. Wang, X.D.: On the dynamic behavior of interacting interfacial cracks in piezoelectric media. Int. J. Solids Struct. 38, 815–831 (2001)

    Article  Google Scholar 

  3. Guo, X., Wei, P., Lan, M., Li, L.: Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers. Ultrasonics 70, 158–171 (2016)

    Article  Google Scholar 

  4. Guo, X., Wei, P.: Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with initial stresses. Ultrasonics 66, 72–85 (2016)

    Article  Google Scholar 

  5. Guo, X., Wei, P.: Dispersion relations of elastic waves in one-dimensional piezoelectric phononic crystal with initial stresses. Ultrasonics 106, 231–244 (2016)

    Google Scholar 

  6. Ezzin, H., Wang, B., Qian, Z.: Propagation behavior of ultrasonic Love waves in functionally graded piezoelectric-piezomagnetic materials with exponential variation. Mech. Mater. 2020(148), 103492 (2020)

    Article  Google Scholar 

  7. Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. Ultrasonics 69(2016), 83–89 (2016)

    Article  Google Scholar 

  8. Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Lamb waves propagation in layered piezoelectric/piezomagnetic plates. Ultrasonics 76(2017), 63–69 (2016)

    Google Scholar 

  9. Shi, P., Chen, C.Q., Zou, W.N.: Propagation of shear elastic and electromagnetic waves in one dimensional piezoelectric and piezomagnetic composites. Ultrasonics 2015(55), 42–47 (2015)

    Article  Google Scholar 

  10. Singh, A.K., Rajput, P., Chaki, M.S.: Analysis on scattering characteristics of Love-type wave due to surface irregularity in a piezoelectric structure. J. Acoust. Soc. Am. 145(6), 3756–3783 (2019). https://doi.org/10.1121/1.5102165

    Article  Google Scholar 

  11. Singh, A.K., Guha, S.: Reflection of plane waves from the surface of a piezothermoelastic fiber-reinforced composite halfspace. Mech. Adv. Mater. Struct. 28(22), 2370–2382 (2021)

    Article  Google Scholar 

  12. Tianshu, S., Diankui, L., Xinhua, Y.: Scattering of SH-Wave and dynamic stress concentration in a piezoelectric medium with a circular hole. J. Harbin Eng. Univ. 23(1), 120–123 (2002)

    Google Scholar 

  13. Hassan, A., Song, T.-S.: Dynamic anti-plane analysis for two symmetrically interfacial cracks near circular cavity in piezoelectric bi-materials. Appl. Math. Mech. Engl. Ed. 35(10), 1261–1270 (2014). https://doi.org/10.1007/s10483-014-1891-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, H., Liu, D.: Scattering of SH-wave around a circular cavity in half space. J. Earthq. Eng. Eng. Vib. 22, 9–16 (2002)

    Google Scholar 

  15. Hui, Q., Zhang, X., Yang, J.: The dynamic stress analysis of a piezoelectric bi-material strip with a cavity. Waves Random Complex Medium 31(3), 538–561 (2021)

    Article  Google Scholar 

  16. Hui, Qi., Jie, Y.: Dynamic analysis for circular inclusion of arbitrary positions near interfacial crack impacted by SH-wave in half-space. Eur. J. Mech. A Solids 36, 18–24 (2012)

    Article  MathSciNet  Google Scholar 

  17. Moreau, L., Caleap, M., Velichko, A., Wilcox, P.D.: Scattering of guided waves by through-thickness cavities with irregular shapes. Wave Motion 48(7), 586–602 (2011). https://doi.org/10.1016/j.wavemoti.2011.04.010

    Article  MathSciNet  MATH  Google Scholar 

  18. Mahanty, M., Chattopadhyay, A., Kumar, P., Singh, A. K.: Effect of initial stress, heterogeneity and anisotropy on the propagation of seismic surface waves. Mech. Adv. Mater. Struct. 27(3), 177–188 (2020)

    Article  Google Scholar 

  19. Nazarov, V.E.: Parametric interaction of acoustic waves in micro-inhomogeneous media with hysteretic nonlinearity and relaxation. Wave Motion 2014(51), 14–22 (2014)

    Article  MathSciNet  Google Scholar 

  20. Chirita, S., Ghiba, I.-D.: Inhomogeneous plane waves in elastic materials with voids. Wave Motion 47(2010), 333–342 (2010)

    Article  MathSciNet  Google Scholar 

  21. Yanga, Z., Zhanga, C., Yanga, Y., Sun, B.: Scattering of out-plane wave by a circular cavity near the right-angle interface in the exponentially inhomogeneous media. Wave Motion 2017(72), 354–362 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-meng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Part I: Decoupling of governing equations

The constitutive equations for a piezoelectric/piezomagnetic material look as follows:

$$ \begin{aligned} \tau _{{xz}} & = c_{{44}} (x,y)\frac{{\partial u}}{{\partial x}} + e_{{15}} (x,y)\frac{{\partial \phi }}{{\partial x}} + h_{{15}} (x,y)\frac{{\partial \varphi }}{{\partial x}}, \\ \tau _{{yz}} & = c_{{44}} (x,y)\frac{{\partial u}}{{\partial y}} + e_{{15}} (x,y)\frac{{\partial \phi }}{{\partial y}} + h_{{15}} (x,y)\frac{{\partial \varphi }}{{\partial y}}, \\ D_{x} & = e_{{15}} (x,y)\frac{{\partial u}}{{\partial x}} - \kappa _{{11}} (x,y)\frac{{\partial \phi }}{{\partial x}} - t_{{11}} (x,y)\frac{{\partial \varphi }}{{\partial x}}, \\ D_{y} & = e_{{15}} (x,y)\frac{{\partial u}}{{\partial y}} - \kappa _{{11}} (x,y)\frac{{\partial \phi }}{{\partial y}} - t_{{11}} (x,y)\frac{{\partial \varphi }}{{\partial y}}, \\ B_{x} & = h_{{15}} (x,y)\frac{{\partial u}}{{\partial x}} - t_{{11}} (x,y)\frac{{\partial \phi }}{{\partial x}} - \mu _{{11}} (x,y)\frac{{\partial \varphi }}{{\partial x}}, \\ B_{y} & = h_{{15}} (x,y)\frac{{\partial u}}{{\partial y}} - t_{{11}} (x,y)\frac{{\partial \phi }}{{\partial y}} - \mu _{{11}} (x,y)\frac{{\partial \varphi }}{{\partial y}}. \\ \end{aligned} $$
(33)

Here, \(\sigma _{{xz}}\) and \(\sigma _{{yz}}\) are stress tensor components;\(D_{x}\) and \(D_{y}\) are electric displacement tensor components;\(B_{x}\) and \(B_{y}\) are magnetic induction components;\(w\), \(\phi\), and \(\varphi\) are displacement, electric potential, and magnetic potential, respectively.

Taking into account the absence of body forces and free charges for the dynamic problem, the equilibrium equations of the piezoelectric/piezomagnetic medium are written as follows:

$$ \begin{aligned} \frac{{\partial \tau _{{xz}} }}{{\partial x}} + \frac{{\partial \tau _{{yz}} }}{{\partial y}} & = \rho \frac{{\partial ^{2} u}}{{\partial t^{2} }}, \\ \frac{{\partial D_{x} }}{{\partial x}} + \frac{{\partial D_{y} }}{{\partial y}} & = 0, \\ \frac{{\partial B_{x} }}{{\partial x}} + \frac{{\partial B_{y} }}{{\partial y}} & = 0. \\ \end{aligned} $$
(34)

Employing Eqs. (34) into (33), the following governing equations are obtained:

$$ \begin{aligned} \frac{{\partial c_{{44}} (x,y)}}{{\partial x}}\frac{{\partial u}}{{\partial x}} + c_{{44}} (x,y)\frac{{\partial ^{2} u}}{{\partial x^{2} }} + \frac{{\partial e_{{15}} (x,y)}}{{\partial x}}\frac{{\partial \phi }}{{\partial x}} + e_{{15}} (x,y)\frac{{\partial ^{2} \phi }}{{\partial x^{2} }} + \frac{{\partial h_{{15}} (x,y)}}{{\partial x}}\frac{{\partial \varphi }}{{\partial x}} + h_{{15}} (x,y)\frac{{\partial ^{2} \varphi }}{{\partial x^{2} }} + \frac{{\partial c_{{44}} (x,y)}}{{\partial y}}\frac{{\partial u}}{{\partial y}} + c_{{44}} (x,y)\frac{{\partial ^{2} u}}{{\partial y^{2} }} + \frac{{\partial e_{{15}} (x,y)}}{{\partial y}}\frac{{\partial \phi }}{{\partial y}} + e_{{15}} (x,y)\frac{{\partial ^{2} \phi }}{{\partial y^{2} }} + \frac{{\partial h_{{15}} (x,y)}}{{\partial y}}\frac{{\partial \varphi }}{{\partial y}} + h_{{15}} (x,y)\frac{{\partial ^{2} \varphi }}{{\partial y^{2} }} = \rho (x,y)\frac{{\partial ^{2} u}}{{\partial t^{2} }} \\ \,,\end{aligned} $$
$$ \begin{aligned} & \frac{{\partial e_{{15}} (x,y)}}{{\partial x}}\frac{{\partial u}}{{\partial x}} + e_{{15}} (x,y)\frac{{\partial ^{2} u}}{{\partial x^{2} }} - \frac{{\partial \kappa _{{11}} (x,y)}}{{\partial x}}\frac{{\partial \phi }}{{\partial x}} \\ & \quad - \kappa _{{11}} (x,y)\frac{{\partial ^{2} \phi }}{{\partial x^{2} }} - \frac{{\partial t_{{11}} (x,y)}}{{\partial x}}\frac{{\partial \varphi }}{{\partial x}} - t_{{11}} (x,y)\frac{{\partial ^{2} \varphi }}{{\partial x^{2} }} \\ & \quad + \frac{{\partial e_{{15}} (x,y)}}{{\partial y}}\frac{{\partial u}}{{\partial y}} + e_{{15}} (x,y)\frac{{\partial ^{2} u}}{{\partial y^{2} }} - \frac{{\partial \kappa _{{11}} (x,y)}}{{\partial y}}\frac{{\partial \phi }}{{\partial y}} \\ & \quad - \kappa _{{11}} (x,y)\frac{{\partial ^{2} \phi }}{{\partial y^{2} }} - \frac{{\partial t_{{11}} (x,y)}}{{\partial y}}\frac{{\partial \varphi }}{{\partial y}} - t_{{11}} (x,y)\frac{{\partial ^{2} \varphi }}{{\partial y^{2} }} = 0 \\ \,,\end{aligned} $$
$$ \begin{aligned} \frac{{\partial h_{{15}} (x,y)}}{{\partial x}}\frac{{\partial u}}{{\partial x}} + h_{{15}} (x,y)\frac{{\partial ^{2} u}}{{\partial x^{2} }} - \frac{{\partial t_{{11}} (x,y)}}{{\partial x}}\frac{{\partial \phi }}{{\partial x}} \\ & \quad - t_{{11}} (x,y)\frac{{\partial ^{2} \phi }}{{\partial x^{2} }} - \frac{{\partial \mu _{{11}} (x,y)}}{{\partial x}}\frac{{\partial \varphi }}{{\partial x}} - \mu _{{11}} (x,y)\frac{{\partial ^{2} \varphi }}{{\partial x^{2} }} \\ & \quad + \frac{{\partial h_{{15}} (x,y)}}{{\partial y}}\frac{{\partial u}}{{\partial y}} + h_{{15}} (x,y)\frac{{\partial ^{2} u}}{{\partial y^{2} }} - \frac{{\partial t_{{11}} (x,y)}}{{\partial y}}\frac{{\partial \phi }}{{\partial y}} \\ & \quad - t_{{11}} (x,y)\frac{{\partial ^{2} \phi }}{{\partial y^{2} }} - \frac{{\partial \mu _{{11}} (x,y)}}{{\partial y}}\frac{{\partial \varphi }}{{\partial y}} - \mu _{{11}} (x,y)\frac{{\partial ^{2} \varphi }}{{\partial y^{2} }} = 0 \,.\\ \end{aligned} $$
(35)

By substituting Eqs. (1) into (35), the governing equations can be described as follows:

$$ \begin{aligned} c_{{440}} \nabla ^{2} u + 2c_{{440}} \left( {p\frac{{\partial u}}{{\partial x}} + q\frac{{\partial u}}{{\partial y}}} \right) + e_{{150}} \nabla ^{2} \phi + 2e_{{150}} \left( {p\frac{{\partial \phi }}{{\partial x}} + q\frac{{\partial \phi }}{{\partial y}}} \right) + h_{{150}} \nabla ^{2} \varphi + 2h_{{150}} \left( {p\frac{{\partial \varphi }}{{\partial x}} + q\frac{{\partial \varphi }}{{\partial y}}} \right) = \rho _{0} \frac{{\partial ^{2} u}}{{\partial t^{2} }} \\ \,,\end{aligned} $$
$$ \begin{aligned} e_{{150}} \nabla ^{2} u + 2e_{{150}} \left( {p\frac{{\partial u}}{{\partial x}} + q\frac{{\partial u}}{{\partial y}}} \right) - \kappa _{{110}} \nabla ^{2} \phi - 2\kappa _{{110}} \left( {p\frac{{\partial \phi }}{{\partial x}} + q\frac{{\partial \phi }}{{\partial y}}} \right) - t_{{110}} \nabla ^{2} \varphi - 2t_{{110}} \left( {p\frac{{\partial \varphi }}{{\partial x}} + q\frac{{\partial \varphi }}{{\partial y}}} \right) = 0 h_{{150}} \nabla ^{2} u + 2h_{{150}} \left( {p\frac{{\partial u}}{{\partial x}} + q\frac{{\partial u}}{{\partial y}}} \right) - t_{{110}} \nabla ^{2} \phi - 2t_{{110}} \left( {p\frac{{\partial \phi }}{{\partial x}} + q\frac{{\partial \phi }}{{\partial y}}} \right) - \mu _{{110}} \nabla ^{2} \varphi - 2\mu _{{110}} \left( {p\frac{{\partial \varphi }}{{\partial x}} + q\frac{{\partial \varphi }}{{\partial y}}} \right) = 0 \\ \,,\end{aligned} $$
(36)

where \(\nabla ^{2}\) represents the two-dimensional Laplace operator.

1.2 Part I: Calculation of unknown coefficients

According to the boundary conditions (11) on the boundary \(B_{{in}}\), the integral equations with unknown coefficients \(A_{n}\),\(B_{n}\),\(C_{n}\),\(D_{n}\),\(E_{n}\),\(R_{n}\),\(L_{n}\),\(T_{n}\),\(U_{n}\) and \(V_{n}\) are established as follows:

$$ \sum\limits_{{n = - \infty }}^{{ + \infty }} {A_{n} \xi _{n}^{{(11)}} + } \sum\limits_{{n = - \infty }}^{{ + \infty }} {R_{n} \xi _{n}^{{(16)}} } = \xi ^{{(1)}} \,,$$
$$ \begin{gathered} \sum\limits_{{n = - \infty }}^{{ + \infty }} {A_{n} \xi _{n}^{{(21)}} + } \sum\limits_{{n = 1}}^{{ + \infty }} {B_{n} \xi _{n}^{{(22)}} + \sum\limits_{{n = 1}}^{{ + \infty }} {C_{n} \xi _{n}^{{(23)}} + } \sum\limits_{{n = 1}}^{{ + \infty }} {D_{n} \xi _{n}^{{(24)}} + } } \sum\limits_{{n = 1}}^{{ + \infty }} {E_{n} \xi _{n}^{{(25)}} } + \sum\limits_{{n = - \infty }}^{{ + \infty }} {R_{n} \xi _{n}^{{(26)}} } \hfill \\ + \sum\limits_{{n = - \infty }}^{{ + \infty }} {L_{n} \xi _{n}^{{(27)}} + } \sum\limits_{{n = - \infty }}^{{ + \infty }} {T_{n} \xi _{n}^{{(28)}} } + \sum\limits_{{n = - \infty }}^{{ + \infty }} {U_{n} \xi _{n}^{{(29)}} + } \sum\limits_{{n = - \infty }}^{{ + \infty }} {V_{n} \xi _{n}^{{(210)}} } = \xi ^{{(2)}} \,,\hfill \\ \end{gathered} $$
$$ \begin{gathered} \sum\limits_{{n = - \infty }}^{{ + \infty }} {A_{n} \xi _{n}^{{(31)}} + } \sum\limits_{{n = 1}}^{{ + \infty }} {B_{n} \xi _{n}^{{(32)}} + \sum\limits_{{n = 1}}^{{ + \infty }} {C_{n} \xi _{n}^{{(33)}} + } \sum\limits_{{n = 1}}^{{ + \infty }} {D_{n} \xi _{n}^{{(34)}} + } } \sum\limits_{{n = 1}}^{{ + \infty }} {E_{n} \xi _{n}^{{(35)}} } + \sum\limits_{{n = - \infty }}^{{ + \infty }} {R_{n} \xi _{n}^{{(36)}} } \hfill \\ + \sum\limits_{{n = - \infty }}^{{ + \infty }} {L_{n} \xi _{n}^{{(37)}} + } \sum\limits_{{n = - \infty }}^{{ + \infty }} {T_{n} \xi _{n}^{{(38)}} } + \sum\limits_{{n = - \infty }}^{{ + \infty }} {U_{n} \xi _{n}^{{(39)}} + } \sum\limits_{{n = - \infty }}^{{ + \infty }} {V_{n} \xi _{n}^{{(310)}} } = \xi ^{{(3)}} \hfill \,,\\ \end{gathered} $$
$$\sum\limits_{{n = 1}}^{{ + \infty }} {B_{n} \xi _{n}^{{(42)}} + \sum\limits_{{n = 1}}^{{ + \infty }} {C_{n} \xi _{n}^{{(43)}} + } } \sum\limits_{{n = - \infty }}^{{ + \infty }} {L_{n} \xi _{n}^{{(47)}} + } \sum\limits_{{n = - \infty }}^{{ + \infty }} {T_{n} \xi _{n}^{{(48)}} } = \xi ^{{(4)}}\,, $$
$$ \begin{gathered} \sum\limits_{{n = - \infty }}^{{ + \infty }} {A_{n} \xi _{n}^{{(51)}} + } \sum\limits_{{n = 1}}^{{ + \infty }} {B_{n} \xi _{n}^{{(52)}} + \sum\limits_{{n = 1}}^{{ + \infty }} {C_{n} \xi _{n}^{{(53)}} + } \sum\limits_{{n = 1}}^{{ + \infty }} {D_{n} \xi _{n}^{{(54)}} + } } \sum\limits_{{n = 1}}^{{ + \infty }} {E_{n} \xi _{n}^{{(55)}} } + \sum\limits_{{n = - \infty }}^{{ + \infty }} {R_{n} \xi _{n}^{{(56)}} } \hfill \\ + \sum\limits_{{n = - \infty }}^{{ + \infty }} {L_{n} \xi _{n}^{{(57)}} + } \sum\limits_{{n = - \infty }}^{{ + \infty }} {T_{n} \xi _{n}^{{(58)}} } + \sum\limits_{{n = - \infty }}^{{ + \infty }} {U_{n} \xi _{n}^{{(59)}} + } \sum\limits_{{n = - \infty }}^{{ + \infty }} {V_{n} \xi _{n}^{{(510)}} } = \xi ^{{(5)}} \hfill \,,\\ \end{gathered} $$
$$ \sum\limits_{{n = 1}}^{{ + \infty }} {D_{n} \xi _{n}^{{(64)}} + } \sum\limits_{{n = 1}}^{{ + \infty }} {E_{n} \xi _{n}^{{(65)}} } + \sum\limits_{{n = - \infty }}^{{ + \infty }} {U_{n} \xi _{n}^{{(69)}} + } \sum\limits_{{n = - \infty }}^{{ + \infty }} {V_{n} \xi _{n}^{{(610)}} } = \xi ^{{(6)}} $$
(37)

where: \(\xi _{n}^{{(11)}} = \sum\limits_{{j = 1}}^{4} {S_{n}^{{(j)}} }\),\(\xi _{n}^{{(16)}} = - J_{n} (k_{{03}} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{n} e^{{ - p_{3} (\frac{{\eta ^{\prime} + \bar{\eta }^{\prime}}}{2}) - q_{3} (\frac{{\eta ^{\prime} - \bar{\eta }^{\prime}}}{{2i}})}}\),

\(\xi _{n}^{{(21)}} = \frac{{k_{1} M_{{\text{1}}}^{{\text{I}}} }}{2}\left[ {\sum\limits_{{j = 1}}^{4} {\chi _{n}^{{(j)}} } \exp (i\theta ) + \sum\limits_{{j = 1}}^{4} {\gamma _{n}^{{(j)}} } \exp ( - i\theta )} \right]\),\(\xi _{n}^{{(22)}} = M_{2}^{{\text{I}}} \left[ {\sum\limits_{{j = 1}}^{2} {\varsigma _{n}^{{(j)}} \exp (i\theta )} + \sum\limits_{{j = 1}}^{2} {\vartheta _{n}^{{(j)}} \exp ( - i\theta )} } \right]\),

\(\xi _{n}^{{(23)}} = M_{2}^{{\text{I}}} \left[ {\sum\limits_{{j = 1}}^{2} {\upsilon _{n}^{{(j)}} \exp (i\theta )} + \sum\limits_{{j = 1}}^{2} {\psi _{n}^{{(j)}} \exp ( - i\theta )} } \right]\),\(\xi _{n}^{{(24)}} = {{(M_{3}^{{\text{I}}} } \mathord{\left/ {\vphantom {{(M_{3}^{{\text{I}}} } {M_{2}^{{\text{I}}} }}} \right. \kern-\nulldelimiterspace} {M_{2}^{{\text{I}}} }})\xi _{n}^{{(22)}}\),\(\xi _{n}^{{(25)}} = {{(M_{3}^{{\text{I}}} } \mathord{\left/ {\vphantom {{(M_{3}^{{\text{I}}} } {M_{2}^{{\text{I}}} }}} \right. \kern-\nulldelimiterspace} {M_{2}^{{\text{I}}} }})\xi _{n}^{{(23)}}\),

\(\xi _{n}^{{(26)}} = - \frac{{k_{{03}} M_{{\text{1}}}^{{{\text{III}}}} }}{2}\left[ {\iota _{1} \exp (i\theta ) + \nu _{1} \exp ( - i\theta )} \right]\),\(\xi _{n}^{{(27)}} = - M_{2}^{{{\text{III}}}} \left[ {\iota _{2} \exp (i\theta ) + \nu _{2} \exp ( - i\theta )} \right]\),

\(\xi _{n}^{{(28)}} = - M_{2}^{{{\text{III}}}} \left[ {\iota _{3} \exp (i\theta ) + \nu _{3} \exp ( - i\theta )} \right]\),\(\xi _{n}^{{(29)}} = {{(M_{3}^{{{\text{III}}}} } \mathord{\left/ {\vphantom {{(M_{3}^{{{\text{III}}}} } {M_{2}^{{{\text{III}}}} }}} \right. \kern-\nulldelimiterspace} {M_{2}^{{{\text{III}}}} }})\xi _{n}^{{(27)}}\),\(\xi _{n}^{{(210)}} = {{(M_{3}^{{{\text{III}}}} } \mathord{\left/ {\vphantom {{(M_{3}^{{{\text{III}}}} } {M_{2}^{{{\text{III}}}} }}} \right. \kern-\nulldelimiterspace} {M_{2}^{{{\text{III}}}} }})\xi _{n}^{{(28)}}\),

\(\xi _{n}^{{(31)}} = a_{{\text{1}}}^{{\text{I}}} \xi _{n}^{{(11)}}\), \(\xi _{n}^{{(32)}} = b_{{\text{1}}}^{{\text{I}}} \sum\limits_{{j = 1}}^{4} {\varphi _{{1n}}^{{(j)}} }\),\(\xi _{n}^{{(33)}} = b_{{\text{1}}}^{{\text{I}}} \sum\limits_{{j = 1}}^{4} {\varphi _{{2n}}^{{(j)}} }\),\( \xi _{n}^{{(34)}} = {\text{ }}(c_{1}^{I} /b_{1}^{I} )\xi _{n}^{{(32)}} \),\(\xi _{n}^{{(35)}} = ({{c_{{\text{1}}}^{{\text{I}}} } \mathord{\left/ {\vphantom {{c_{{\text{1}}}^{{\text{I}}} } {b_{{\text{1}}}^{{\text{I}}} }}} \right. \kern-\nulldelimiterspace} {b_{{\text{1}}}^{{\text{I}}} }})\xi _{n}^{{(33)}}\),

\(\xi _{n}^{{(36)}} = a_{{\text{1}}}^{{{\text{III}}}} \xi _{n}^{{(16)}}\),\(\xi _{n}^{{(37)}} = - b_{{\text{1}}}^{{{\text{III}}}} e^{{ - p_{3} (\frac{{\eta ^{\prime} + \bar{\eta }^{\prime}}}{2}) - q_{3} (\frac{{\eta ^{\prime} - \bar{\eta }^{\prime}}}{{2i}})}} H_{n}^{{(1)}} (ik^{\prime}_{3} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{n}\),

\(\xi _{n}^{{(38)}} = - b_{{\text{1}}}^{{{\text{III}}}} e^{{ - p_{3} (\frac{{\eta ^{\prime} + \bar{\eta }^{\prime}}}{2}) - q_{3} (\frac{{\eta ^{\prime} - \bar{\eta }^{\prime}}}{{2i}})}} H_{n}^{{(2)}} (ik^{\prime}_{3} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{n}\),\(\xi _{n}^{{(39)}} = ({{c_{{\text{1}}}^{{{\text{III}}}} } \mathord{\left/ {\vphantom {{c_{{\text{1}}}^{{{\text{III}}}} } {b_{{\text{1}}}^{{{\text{III}}}} }}} \right. \kern-\nulldelimiterspace} {b_{{\text{1}}}^{{{\text{III}}}} }})\xi _{n}^{{(37)}}\),\(\xi _{n}^{{(310)}} = ({{c_{{\text{1}}}^{{{\text{III}}}} } \mathord{\left/ {\vphantom {{c_{{\text{1}}}^{{{\text{III}}}} } {b_{{\text{1}}}^{{{\text{III}}}} }}} \right. \kern-\nulldelimiterspace} {b_{{\text{1}}}^{{{\text{III}}}} }})\xi _{n}^{{(38)}}\),

\(\xi _{n}^{{(42)}} = {{(1} \mathord{\left/ {\vphantom {{(1} {M_{2}^{{\text{I}}} }}} \right. \kern-\nulldelimiterspace} {M_{2}^{{\text{I}}} }})\xi _{n}^{{(22)}}\),\(\xi _{n}^{{(43)}} = {{(1} \mathord{\left/ {\vphantom {{(1} {M_{2}^{{\text{I}}} }}} \right. \kern-\nulldelimiterspace} {M_{2}^{{\text{I}}} }})\xi _{n}^{{(23)}}\), \(\xi _{n}^{{(47)}} = {{(1} \mathord{\left/ {\vphantom {{(1} {M_{2}^{{{\text{III}}}} }}} \right. \kern-\nulldelimiterspace} {M_{2}^{{{\text{III}}}} }})\xi _{n}^{{(27)}}\),\(\xi _{n}^{{(48)}} = {{(1} \mathord{\left/ {\vphantom {{(1} {M_{2}^{{{\text{III}}}} }}} \right. \kern-\nulldelimiterspace} {M_{2}^{{{\text{III}}}} }})\xi _{n}^{{(28)}}\),

\(\xi _{n}^{{(51)}} = ({{a_{2}^{{\text{I}}} } \mathord{\left/ {\vphantom {{a_{2}^{{\text{I}}} } {a_{{\text{1}}}^{{\text{I}}} }}} \right. \kern-\nulldelimiterspace} {a_{{\text{1}}}^{{\text{I}}} }})\xi _{n}^{{(31)}}\), \(\xi _{n}^{{(52)}} = ({{b_{2}^{{\text{I}}} } \mathord{\left/ {\vphantom {{b_{2}^{{\text{I}}} } {b_{{\text{1}}}^{{\text{I}}} }}} \right. \kern-\nulldelimiterspace} {b_{{\text{1}}}^{{\text{I}}} }})\xi _{n}^{{(32)}}\),\(\xi _{n}^{{(53)}} = ({{b_{2}^{{\text{I}}} } \mathord{\left/ {\vphantom {{b_{2}^{{\text{I}}} } {b_{{\text{1}}}^{{\text{I}}} }}} \right. \kern-\nulldelimiterspace} {b_{{\text{1}}}^{{\text{I}}} }})\xi _{n}^{{(33)}}\),\(\xi _{n}^{{(54)}} = ({{c_{2}^{{\text{I}}} } \mathord{\left/ {\vphantom {{c_{2}^{{\text{I}}} } {b_{2}^{{\text{I}}} }}} \right. \kern-\nulldelimiterspace} {b_{2}^{{\text{I}}} }})\xi _{n}^{{(52)}}\),\(\xi _{n}^{{(55)}} = ({{c_{2}^{{\text{I}}} } \mathord{\left/ {\vphantom {{c_{2}^{{\text{I}}} } {b_{2}^{{\text{I}}} }}} \right. \kern-\nulldelimiterspace} {b_{2}^{{\text{I}}} }})\xi _{n}^{{(53)}}\),\(\xi _{n}^{{(56)}} = ({{a_{2}^{{{\text{III}}}} } \mathord{\left/ {\vphantom {{a_{2}^{{{\text{III}}}} } {a_{{\text{1}}}^{{{\text{III}}}} }}} \right. \kern-\nulldelimiterspace} {a_{{\text{1}}}^{{{\text{III}}}} }})\xi _{n}^{{(36)}}\),\(\xi _{n}^{{(57)}} = ({{b_{2}^{{{\text{III}}}} } \mathord{\left/ {\vphantom {{b_{2}^{{{\text{III}}}} } {b_{{\text{1}}}^{{{\text{III}}}} }}} \right. \kern-\nulldelimiterspace} {b_{{\text{1}}}^{{{\text{III}}}} }})\xi _{n}^{{(37)}}\), \(\xi _{n}^{{(58)}} = ({{b_{2}^{{{\text{III}}}} } \mathord{\left/ {\vphantom {{b_{2}^{{{\text{III}}}} } {b_{{\text{1}}}^{{{\text{III}}}} }}} \right. \kern-\nulldelimiterspace} {b_{{\text{1}}}^{{{\text{III}}}} }})\xi _{n}^{{(38)}}\),\(\xi _{n}^{{(59)}} = ({{c_{2}^{{{\text{III}}}} } \mathord{\left/ {\vphantom {{c_{2}^{{{\text{III}}}} } {b_{2}^{{{\text{III}}}} }}} \right. \kern-\nulldelimiterspace} {b_{2}^{{{\text{III}}}} }})\xi _{n}^{{(57)}}\), \(\xi _{n}^{{(510)}} = ({{c_{2}^{{{\text{III}}}} } \mathord{\left/ {\vphantom {{c_{2}^{{{\text{III}}}} } {b_{2}^{{{\text{III}}}} }}} \right. \kern-\nulldelimiterspace} {b_{2}^{{{\text{III}}}} }})\xi _{n}^{{(58)}}\), \(\xi _{n}^{{(64)}} = \xi _{n}^{{(42)}}\),\(\xi _{n}^{{(65)}} = \xi _{n}^{{(43)}}\),\(\xi _{n}^{{(69)}} = \xi _{n}^{{(64)}}\),\(\xi _{n}^{{(610)}} = \xi _{n}^{{(65)}}\,,\).

\(\chi _{n}^{{(1)}} = H_{{n - 1}}^{{(1)}} (k_{1} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{{n - 1}}\), \(\chi _{n}^{{(2)}} = - H_{{n + 1}}^{{(1)}} (k_{1} \left| {\eta ^{\prime}_{1} } \right|)\left[ {{{\eta ^{\prime}_{1} } \mathord{\left/ {\vphantom {{\eta ^{\prime}_{1} } {\left| {\eta ^{\prime}_{1} } \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}_{1} } \right|}}} \right]^{{ - n - 1}}\), \(\chi _{n}^{{(3)}} = ( - 1)^{n} H_{{n - 1}}^{{(1)}} (k_{1} \left| {\eta ^{\prime}_{2} } \right|)\left[ {{{\eta ^{\prime}_{2} } \mathord{\left/ {\vphantom {{\eta ^{\prime}_{2} } {\left| {\eta ^{\prime}_{2} } \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}_{2} } \right|}}} \right]^{{n - 1}}\),\(\chi _{n}^{{(4)}} = - ( - 1)^{n} H_{{n + 1}}^{{(1)}} (k_{1} \left| {\eta ^{\prime}_{3} } \right|)\left[ {{{\eta ^{\prime}_{3} } \mathord{\left/ {\vphantom {{\eta ^{\prime}_{3} } {\left| {\eta ^{\prime}_{3} } \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}_{3} } \right|}}} \right]^{{ - n - 1}}\),

\(\gamma _{n}^{{(1)}} = - H_{{n + 1}}^{{(1)}} (k_{1} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{{n + 1}}\), \(\gamma _{n}^{{(2)}} = H_{{n - 1}}^{{(1)}} (k_{1} \left| {\eta ^{\prime}_{1} } \right|)\left[ {{{\eta ^{\prime}_{1} } \mathord{\left/ {\vphantom {{\eta ^{\prime}_{1} } {\left| {\eta ^{\prime}_{1} } \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}_{1} } \right|}}} \right]^{{ - n + 1}}\).

\(\gamma _{n}^{{(3)}} = - ( - 1)^{n} H_{{n + 1}}^{{(1)}} (k_{1} \left| {\eta ^{\prime}_{2} } \right|)\left[ {{{\eta ^{\prime}_{2} } \mathord{\left/ {\vphantom {{\eta ^{\prime}_{2} } {\left| {\eta ^{\prime}_{2} } \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}_{2} } \right|}}} \right]^{{n + 1}}\),\(\gamma _{n}^{{(4)}} = ( - 1)^{n} H_{{n - 1}}^{{(1)}} (k_{1} \left| {\eta ^{\prime}_{3} } \right|)\left[ {{{\eta ^{\prime}_{3} } \mathord{\left/ {\vphantom {{\eta ^{\prime}_{3} } {\left| {\eta ^{\prime}_{3} } \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}_{3} } \right|}}} \right]^{{ - n + 1}}\),

\( \varsigma _{n}^{{(1)}} = - n\eta ^{{\prime - n - 1}} \),\(\varsigma _{n}^{{(2)}} = - ( - 1)^{n} n(\eta ^{\prime} - 2d - 2hi)^{{ - n - 1}}\), \(\vartheta _{n}^{{(1)}} = - n(\bar{\eta }^{\prime} + 2hi)^{{ - n - 1}}\),\(\vartheta _{n}^{{(2)}} = - ( - 1)^{n} n(\bar{\eta }^{\prime} - 2d)^{{ - n - 1}}\),

\(\upsilon _{n}^{{(1)}} = - n(\eta ^{\prime} - 2hi)^{{ - n - 1}}\),\(\upsilon _{n}^{{(2)}} = - n( - 1)^{n} (\eta ^{\prime} - 2d)^{{ - n - 1}}\),\( \psi _{n}^{{(1)}} = - n\bar{\eta }^{{\prime - n - 1}} \),\(\psi _{n}^{{(2)}} = - ( - 1)^{n} n(\bar{\eta }^{\prime} - 2d + 2hi)^{{ - n - 1}}\),

$$ \iota _{1} = e^{{p_{3} \left( {\frac{{\eta ^{\prime} + \bar{\eta }^{\prime}}}{2}} \right) + q_{3} \left( {\frac{{\eta ^{\prime} - \bar{\eta }^{\prime}}}{{2i}}} \right)}} \left[ {\frac{{k_{{03}} }}{2}J_{{n - 1}}^{{(1)}} (k_{{03}} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{{n - 1}} - \frac{1}{2}(p_{3} - q_{3} i)J_{n}^{{(1)}} (k_{{03}} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{n} } \right], $$
$$ \nu _{1} = e^{{p_{3} \left( {\frac{{\eta ^{\prime} + \bar{\eta }^{\prime}}}{2}} \right) + q_{3} \left( {\frac{{\eta ^{\prime} - \bar{\eta }^{\prime}}}{{2i}}} \right)}} \left[ { - \frac{{k_{{03}} }}{2}J_{{n + 1}}^{{(1)}} (k_{{03}} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{{n + 1}} - \frac{1}{2}(p_{3} + q_{3} i)J_{n}^{{(1)}} (k_{{03}} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{n} } \right], $$
$$ \iota _{3} = e^{{p_{3} \left( {\frac{{\eta ^{\prime} + \bar{\eta }^{\prime}}}{2}} \right) + q_{3} \left( {\frac{{\eta ^{\prime} - \bar{\eta }^{\prime}}}{{2i}}} \right)}} \left[ {\frac{{ik^{\prime}_{3} }}{2}H_{{n - 1}}^{{(1)}} (ik^{\prime}_{3} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{{n - 1}} - \frac{1}{2}(p_{3} - q_{3} i)H_{n}^{{(1)}} (ik^{\prime}_{3} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{n} } \right], $$
$$ \nu _{3} = e^{{p_{3} \left( {\frac{{\eta ^{\prime} + \bar{\eta }^{\prime}}}{2}} \right) + q_{3} \left( {\frac{{\eta ^{\prime} - \bar{\eta }^{\prime}}}{{2i}}} \right)}} \left[ { - \frac{{ik^{\prime}_{3} }}{2}H_{{n + 1}}^{{(1)}} (ik^{\prime}_{3} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{{n + 1}} - \frac{1}{2}(p_{3} + q_{3} i)H_{n}^{{(1)}} (ik^{\prime}_{3} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{n} } \right], $$
$$ \iota _{2} = e^{{p_{3} \left( {\frac{{\eta ^{\prime} + \bar{\eta }^{\prime}}}{2}} \right) + q_{3} \left( {\frac{{\eta ^{\prime} - \bar{\eta }^{\prime}}}{{2i}}} \right)}} \left[ {\frac{{ik^{\prime}_{3} }}{2}H_{{n - 1}}^{{(2)}} (ik^{\prime}_{3} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{{n - 1}} - \frac{1}{2}(p_{3} - q_{3} i)H_{n}^{{(2)}} (ik^{\prime}_{3} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{n} } \right], $$
$$ \nu _{2} = e^{{p_{3} \left( {\frac{{\eta ^{\prime} + \bar{\eta }^{\prime}}}{2}} \right) + q_{3} \left( {\frac{{\eta ^{\prime} - \bar{\eta }^{\prime}}}{{2i}}} \right)}} \left[ { - \frac{{ik^{\prime}_{3} }}{2}H_{{n + 1}}^{{(2)}} (ik^{\prime}_{3} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{{n + 1}} - \frac{1}{2}(p_{3} + q_{3} i)H_{n}^{{(2)}} (ik^{\prime}_{3} \left| {\eta ^{\prime}} \right|)\left[ {{{\eta ^{\prime}} \mathord{\left/ {\vphantom {{\eta ^{\prime}} {\left| {\eta ^{\prime}} \right|}}} \right. \kern-\nulldelimiterspace} {\left| {\eta ^{\prime}} \right|}}} \right]^{n} } \right], $$
$$ \begin{aligned} \xi ^{{(1)}} & = - (w^{i} + w^{r} ),\xi ^{{(2)}} = - (\tau _{{\theta z}}^{i} + \tau _{{\theta z}}^{r} ),\xi ^{{(3)}} = - (\phi ^{i} + \phi ^{r} ), \\ \xi ^{{(4)}} & = - (D_{\theta }^{i} + D_{\theta }^{r} ),\xi ^{{(5)}} = - (\varphi ^{i} + \varphi ^{r} ),\xi ^{{(6)}} = - (B_{\theta }^{i} + B_{\theta }^{r} ). \\ \end{aligned} $$

In order to solve Eq. (37), we multiply both sides of these equations by the coefficient \(\exp ( - im\theta ^{\prime})\) and integrate the variable \(\theta ^{\prime}\) in the known coefficient of Eq. (37) in the range of \(( - \pi ,\pi )\). Such operation enables to simplify Eq. (37) into linear algebraic equations.

1.3 Part II: Green’s function

Green’s function method is also called point source method.

Firstly, the piezoelectric/piezomagnetic half-space is divided into two right angle regions along the vertical interface \(B_{V}\), and the unit point source load \(\delta (\eta - \eta _{0} ){\kern 1pt}\),\(\eta _{0} = yi(y \le h)\) is applied on the boundary \(B_{V}\) as the incident wave source, as shown in Fig. 

Fig. 15
figure 15

Point source load

15.

The displacement function also satisfies the governing Eq. (6) and the boundary conditions (10), (11) on the boundaries \(B_{H}\) and \(B_{{in}}\). Unlike the boundary conditions on the vertical boundary \(B_{H} {\kern 1pt}\) in Sect. 4.1, here it becomes:

$$ {\kern 1pt} {\kern 1pt} \left. {\tau _{{xz}}^{{\text{I}}} } \right|_{{x = 0}} = \delta (\eta - \eta _{0} ) \,,$$
(38)

Since Medium I is homogeneous, the displacement function \(G_{{w1}}^{i}\) can be expressed as follows according to [15]:

$$ G_{{w1}}^{i} = H_{0}^{{(1)}} (k_{1} \left| {\eta - \eta _{0} } \right|) + H_{0}^{{(1)}} (k_{1} \left| {\eta - \bar{\eta }_{0} - 2hi} \right|)\,, $$
(39)

Taking into account that Medium II is inhomogeneous, the displacement function \(G_{{w2}}^{i}\) can be expressed in the following form:

$$ G_{{w2}}^{i} = e^{{ - \frac{{p_{2} (\eta + \bar{\eta })}}{2}}} \left[ {H_{0}^{{(1)}} (k_{{02}} \left| {\eta - \eta _{0} } \right|) + H_{0}^{{(1)}} (k_{{02}} \left| {\eta - \bar{\eta }_{0} - 2hi} \right|)} \right]\,, $$
(40)

The displacement field \(G_{{w1}}^{{( \bullet )}}\),\(G_{{w2}}^{{( \bullet )}}\), electric field \(G_{{\phi 1}}^{{( \bullet )}}\),\(G_{{\phi 2}}^{{( \bullet )}}\), and magnetic field \(G_{{\varphi 1}}^{{( \bullet )}}\),\(G_{{\varphi 2}}^{{( \bullet )}}\) are obtained by means of the same procedure as used for calculating SH-wave (Note that the superscript \(( \bullet )\) refers to I, II, III).

To make the calculations more convenient, the polar coordinate system \((r^{\prime\prime},\theta ^{\prime\prime})\) is set at the origin of the right-angle plane, and the respective complex variables are \(\eta ^{\prime\prime} = r^{\prime\prime}e^{{i\theta ^{\prime\prime}}}\) and \(\bar{\eta ^{\prime\prime}} = r^{\prime\prime}e^{{ - i\theta ^{\prime\prime}}}\).

Then pairs of unknown external force \(f_{1} (r^{\prime\prime},\theta ^{\prime\prime})\),\(f_{2} (r^{\prime\prime},\theta ^{\prime\prime})\), external electric field \(f_{3} (r^{\prime\prime},\theta ^{\prime\prime})\),\(f_{4} (r^{\prime\prime},\theta ^{\prime\prime})\), and external magnetic field \(f_{5} (r^{\prime\prime},\theta ^{\prime\prime})\),\(f_{6} (r^{\prime\prime},\theta ^{\prime\prime})\) are applied on the boundary \(B_{V}\) as the amplitude function of \(\delta (\eta - \eta _{0} ){\kern 1pt}\), as shown in Fig. 

Fig. 16
figure 16

Systems of external force

16. Note that unknown parameters in each pair introduced above have equal values and opposite directions.

Finally, these unknown coefficients above are obtained with the aid of the continuous conditions (15) on the boundary \(B_{V}\):

$$ \begin{aligned} & w^{{\text{I}}} + w^{{f1}} = w^{{{\text{II}}}} + w^{{f2}} ,\phi ^{{\text{I}}} + \phi ^{{f3}} = \phi ^{{{\text{II}}}} + \phi ^{{f4}} , \\ & \varphi ^{{\text{I}}} + \varphi ^{{f5}} = \varphi ^{{{\text{II}}}} + \varphi ^{{f6}} \,,\\ \end{aligned} $$
(41)

where:

\(w^{{f1}} = \int_{0}^{{ + \infty }} {f_{1} (r^{\prime\prime}_{0} ,\beta _{1} )G_{w}^{{\text{I}}} (r^{\prime\prime}_{0} ,\beta _{1} ;r^{\prime\prime},\theta ^{\prime\prime})} dr^{\prime\prime}_{0}\),\(w^{{f2}} = - \int_{0}^{{ + \infty }} {f_{2} (r^{\prime\prime}_{0} ,\beta _{1} )G_{w}^{{{\text{II}}}} (r^{\prime\prime}_{0} ,\beta _{1} ;r^{\prime\prime},\theta ^{\prime\prime})} dr^{\prime\prime}_{0}\),

\(\phi ^{{f1}} = \int_{0}^{{ + \infty }} {f_{3} (r^{\prime\prime}_{0} ,\beta _{1} )G_{\phi }^{{\text{I}}} (r^{\prime\prime}_{0} ,\beta _{1} ;r^{\prime\prime},\theta ^{\prime\prime})} dr^{\prime\prime}_{0}\),\(\phi ^{{f2}} = - \int_{0}^{{ + \infty }} {f_{4} (r^{\prime\prime}_{0} ,\beta _{1} )G_{\phi }^{{{\text{II}}}} (r^{\prime\prime}_{0} ,\beta _{1} ;r^{\prime\prime},\theta ^{\prime\prime})} dr^{\prime\prime}_{0}\),

\(\varphi ^{{f1}} = \int_{0}^{{ + \infty }} {f_{5} (r^{\prime\prime}_{0} ,\beta _{1} )G_{\varphi }^{{\text{I}}} (r^{\prime\prime}_{0} ,\beta _{1} ;r^{\prime\prime},\theta ^{\prime\prime})} dr^{\prime\prime}_{0}\),\(\varphi ^{{f2}} = - \int_{0}^{{ + \infty }} {f_{6} (r^{\prime\prime}_{0} ,\beta _{1} )G_{\varphi }^{{{\text{II}}}} (r^{\prime\prime}_{0} ,\beta _{1} ;r^{\prime\prime},\theta ^{\prime\prime})} dr^{\prime\prime}_{0}\),

\(\beta _{1} = - {\pi \mathord{\left/ {\vphantom {\pi 2}} \right. \kern-\nulldelimiterspace} 2}\) and physical variable \(( \bullet )^{{fi}}\) is produced by \(f_{i} (r^{\prime\prime},\theta ^{\prime\prime})\), \((i = 1,2,3,4)\).

The scattering wave has no effect on the boundary \(B_{V}\). According to Eq. (15), the continuity conditions for stress, electric displacement, and magnetic induction must be satisfied as follows:

\(f_{1} (r^{\prime\prime}_{0} ,\beta _{1} ) = f_{2} (r^{\prime\prime}_{0} ,\beta _{1} )\), \(f_{3} (r^{\prime\prime}_{0} ,\beta _{1} ) = f_{4} (r^{\prime\prime}_{0} ,\beta _{1} )\),\(f_{5} (r^{\prime\prime}_{0} ,\beta _{1} ) = f_{6} (r^{\prime\prime}_{0} ,\beta _{1} )\),

$$ \begin{aligned} & \int_{0}^{{ + \infty }} {f_{1} (r^{\prime\prime}_{0} ,\beta _{1} )\left[ {G_{w}^{{\text{I}}} (r^{\prime\prime}_{0} ,\beta _{1} ;r^{\prime\prime},\theta ^{\prime\prime}) + } \right.} \left. {G_{w}^{{{\text{II}}}} (r^{\prime\prime}_{0} ,\beta _{1} ;r^{\prime\prime},\theta ^{\prime\prime})} \right]{\text{d}}r^{\prime\prime}_{0} = - w^{s} , \\ & \int_{0}^{{ + \infty }} {f_{3} (r^{\prime\prime}_{0} ,\beta _{1} )\left[ {G_{\phi }^{{\text{I}}} (r^{\prime\prime}_{0} ,\beta _{1} ;r^{\prime\prime},\theta ^{\prime\prime}) + } \right.} \left. {G_{\phi }^{{{\text{II}}}} (r^{\prime\prime}_{0} ,\beta _{1} ;r^{\prime\prime},\theta ^{\prime\prime})} \right]{\text{d}}r^{\prime\prime}_{0} = - \phi ^{s} , \\ & \int_{0}^{{ + \infty }} {f_{5} (r^{\prime\prime}_{0} ,\beta _{1} )\left[ {G_{\varphi }^{{\text{I}}} (r^{\prime\prime}_{0} ,\beta _{1} ;r^{\prime\prime},\theta ^{\prime\prime}) + } \right.} \left. {G_{\varphi }^{{{\text{II}}}} (r^{\prime\prime}_{0} ,\beta _{1} ;r^{\prime\prime},\theta ^{\prime\prime})} \right]{\text{d}}r^{\prime\prime}_{0} = - \varphi ^{s} . \\ \end{aligned} $$
(42)

Equations (42) are Fredholm equations of the first kind. By selecting different coordinate points, they can be solved by the interpolation method.

1.4 Part III: Relationship between different parameters of SH-waves

Based on the continuity of displacement as well as electric potential and magnetic potential on the vertical boundary in Eq. (15), the following relationship can be known:

$$ k_{1} \sin \alpha _{0} = k_{2} \sin \alpha _{2} \,,$$
(43)

For mathematical simplicity, the following parameters are introduced:

\(\lambda _{1} = \cos \alpha _{0}\),\(\lambda _{2} = \cos \alpha _{2}\),\(c_{1} = c_{{{\text{440}}}}^{{\text{I}}}\),\(c_{2} = c_{{{\text{440}}}}^{{{\text{II}}}}\),\(e_{1} = e_{{{\text{150}}}}^{{\text{I}}}\),\(e_{2} = e_{{{\text{150}}}}^{{{\text{II}}}}\),\(h_{1} = h_{{{\text{150}}}}^{{\text{I}}}\),\(h_{2} = h_{{{\text{150}}}}^{{{\text{II}}}}\),\(d_{1} = \kappa _{{{\text{110}}}}^{{\text{I}}}\),\(d_{2} = \kappa _{{{\text{110}}}}^{{{\text{II}}}}\),\(t_{1} = t_{{{\text{110}}}}^{{\text{I}}}\),\(t_{2} = t_{{{\text{110}}}}^{{{\text{II}}}}\),\(\mu _{1} = \mu _{{{\text{110}}}}^{{\text{I}}}\),\(\mu _{2} = \mu _{{{\text{110}}}}^{{{\text{II}}}}\).

Combining with Eq. (15), the following equations are obtained:

$$ \left\{ \begin{gathered} w_{0} c_{1} (ik_{1} \lambda _{1} ) - w_{1} c_{1} (ik_{1} \lambda _{1} ) + \phi _{0} e_{1} (ik_{1} \lambda _{1} ) - \phi _{1} e_{1} (ik_{1} \lambda _{1} ) + \varphi _{0} h_{1} (ik_{1} \lambda _{1} )_{1} - \varphi _{1} h_{1} (ik_{1} \lambda _{1} ) \hfill \\ = w_{2} c_{2} (ik_{{02}} \lambda _{2} - p_{2} ) + \phi _{2} e_{2} (ik_{{02}} \lambda _{2} - p_{2} ) + \varphi _{2} h_{2} (ik_{{02}} \lambda _{2} - p_{2} ) \hfill \\ w_{0} e_{1} (ik_{1} \lambda _{1} ) - w_{1} e_{1} (ik_{1} \lambda _{1} )_{1} - \left[ {\phi _{0} d_{1} (ik_{1} \lambda _{1} ) - \phi _{1} d_{1} (ik_{1} \lambda _{1} )} \right] - \left[ {\varphi _{0} t_{1} (ik_{1} \lambda _{1} ) - \varphi _{1} t_{1} (ik_{1} \lambda _{1} )} \right] \hfill \\ = w_{2} e_{2} (ik_{{02}} \lambda _{2} - p_{2} ) - \phi _{2} d_{2} (ik_{{02}} \lambda _{2} - p_{2} ) - \varphi _{2} t_{2} (ik_{{02}} \lambda _{2} - p_{2} ) \hfill \\ w_{0} h_{1} (ik_{1} \lambda _{1} ) - w_{1} h_{1} (ik_{1} \lambda _{1} ) - \left[ {\phi _{0} t_{1} (ik_{1} \lambda _{1} ) - \phi _{1} t_{1} (ik_{1} \lambda _{1} )} \right] - \left[ {\varphi _{0} \mu _{1} (ik_{1} \lambda _{1} ) - \varphi _{1} \mu _{1} (ik_{1} \lambda _{1} )} \right] \hfill \\ = w_{2} h_{2} (ik_{{02}} \lambda _{2} - p_{2} ) - \phi _{2} t_{2} (ik_{{02}} \lambda _{2} - p_{2} ) - \varphi _{2} \mu _{2} (ik_{{02}} \lambda _{2} - p_{2} ). \hfill \\ \end{gathered} \right. $$
(44)

Note that \(w_{0}\), \(\phi _{0}\), and \(\varphi _{0}\) in Eq. (44) are known quantities, so Eq. (44) can be transformed into the following form:

$$ \left\{ \begin{gathered} w_{1} c_{1} (ik_{1} \lambda _{1} ) + w_{2} c_{2} (ik_{{02}} \lambda _{2} - p_{2} ) + \phi _{1} e_{1} (ik_{1} \lambda _{1} ) + \phi _{2} e_{2} (ik_{{02}} \lambda _{2} - p_{2} ) + \varphi _{1} h_{1} (ik_{1} \lambda _{1} ) + \varphi _{2} h_{2} (ik_{{02}} \lambda _{2} - p_{2} ) \hfill \\ = w_{0} c_{1} (ik_{1} \lambda _{1} ) + \phi _{0} e_{1} (ik_{1} \lambda _{1} ) + \varphi _{0} h_{1} (ik_{1} \lambda _{1} ) \hfill \\ w_{1} e_{1} (ik_{1} \lambda _{1} ) + w_{2} e_{2} (ik_{{02}} \lambda _{2} - p_{2} ) - \phi _{1} d_{1} (ik_{1} \lambda _{1} ) - \phi _{2} d_{2} (ik_{{02}} \lambda _{2} - p_{2} ) - \varphi _{1} t_{1} (ik_{1} \lambda _{1} ) - \varphi _{2} t_{2} (ik_{{02}} \lambda _{2} - p_{2} ) \hfill \\ = w_{0} e_{1} (ik_{1} \lambda _{1} ) - \phi _{0} d_{1} (ik_{1} \lambda _{1} ) - \varphi _{0} t_{1} (ik_{1} \lambda _{1} ) \hfill \\ w_{1} h_{1} (ik_{1} \lambda _{1} ) + w_{2} h_{2} (ik_{{02}} \lambda _{2} - p_{2} ) - \phi _{1} t_{1} (ik_{1} \lambda _{1} ) - \phi _{2} t_{2} (ik_{{02}} \lambda _{2} - p_{2} ) - \varphi _{1} \mu _{1} (ik_{1} \lambda _{1} ) - \varphi _{2} \mu _{2} (ik_{{02}} \lambda _{2} - p_{2} ) \hfill \\ = w_{0} h_{1} (ik_{1} \lambda _{1} ) - \phi _{0} t_{1} (ik_{1} \lambda _{1} ) - \varphi _{0} \mu _{1} (ik_{1} \lambda _{1} ). \hfill \\ \end{gathered} \right. $$
(45)

For mathematical simplicity, the parameters \(\gamma _{1} = ik_{1} \lambda _{1}\) and \(\gamma _{2} = ik_{{02}} \lambda _{2} - p_{2}\) are introduced. In Eq. (45),\(w_{0}\), \(\phi _{0}\), and \(\varphi _{0}\) are regarded as known coefficients. Cramer’s Rule can be used to find the unknown coefficients \(w_{1}\),\(w_{2}\),\(\phi _{1}\),\(\phi _{2}\),\(\varphi _{1}\), and \(\varphi _{2}\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xm., Qi, H. Propagation of SH-waves in inhomogeneous piezoelectric/piezomagnetic half-space with circular inclusion. Acta Mech 233, 3829–3852 (2022). https://doi.org/10.1007/s00707-022-03315-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03315-2

Navigation