Skip to main content
Log in

Laser short-pulse impact on magneto-photo-thermo-diffusion waves in excited semiconductor medium with fractional heat equation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, magneto-thermodiffusion waves in an excited semiconductor medium are investigated under the impact of laser short-pulse heating. The Caputo fractional derivative is applied on the main heat equation according to the photo-thermoelasticity theory. The governing equations describe the effect of holes and electrons interactions inside the medium under the influence of external magnetic field. The main equations are considered one-dimensional (1D) during an electronic deformation and a thermoelastic deformation. The Laplace transform with some initial conditions applied is used to obtain the analytical solutions of the main physical fields in dimensionless form. Some boundary conditions taken on the semiconductor surface are applied to determine the values of some undefined parameters. The complete numerical solutions are obtained according to the inversion method with Riemann-sum approximation of the Laplace transforms. The input physical parameters of silicon semiconductor material are used to make the simulations and comparisons. The numerical simulations are presented graphically and discussed according to the different values of time-fractional derivative, magnetic field, and thermal relaxation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The information applied in this research is ready from the authors at request.

Abbreviations

\(\lambda ,\,\,\mu \quad \quad \;\) :

Lamé’s parameters

\(n_{0}\) :

Electrons concentration at equilibrium

\(h_{0}\) :

Holes concentration at equilibrium

\(T_{0} \;\) :

Absolute temperature

\(\gamma = (3\lambda + 2\mu )\alpha_{t}\) :

The volume coefficient of thermal expansion

\(\sigma_{{{\text{ij}}}}\) :

Stress tensor

\({\uprho }\quad \quad\) :

Medium density

\(\alpha_{t}\) :

The coefficient of linear thermal expansion

\(e = \frac{\partial u}{{\partial x}}\) :

Cubical dilatation

\(\tau_{q}\) and \(\tau_{\theta }\) :

The thermal relaxation times (phase lag)

\(C_{e}\) :

Specific heat at constant strain of the medium

\(K\) :

The thermal conductivity of the medium

\(\tau^{*}\) :

The photogenerated carrier lifetime

\(E_{g}\) :

The energy gap of the medium of semiconductor

\(\delta_{n} = (2\mu + 3\lambda )d_{n}\) :

The electrons elastodiffusive parameter

\(\delta_{h} = (2\mu + 3\lambda )d_{h}\) :

The holes elastodiffusive parameter

\(d_{n}\) :

The coefficients of electronic deformation

\(d_{h}\) :

The coefficients of hole deformation

\(p\) :

The power intensity

\(\delta\) :

The absorption coefficient

\(\Omega\) :

The pulse parameter

\(\mu_{0}\) :

The magnetic permeability

References

  1. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  2. Lord, H., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  Google Scholar 

  3. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  Google Scholar 

  4. Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39, 355–376 (1986)

    Article  Google Scholar 

  5. Chandrasekharaiah, D.S.: Hyperbolic Thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  Google Scholar 

  6. Sharma, J., Kumar, V., Chand, D.: Reflection of generalized thermoelastic waves from the boundary of a half-space. J. Therm. Stress. 26, 925–942 (2003)

    Article  Google Scholar 

  7. Lotfy, Kh., Abo-Dahab, S.: Two-dimensional problem of two temperature generalized thermoelasticity with normal mode analysis under thermal shock problem. J. Comput. Theor. Nanosci. 12(8), 1709–1719 (2015)

    Article  Google Scholar 

  8. Othman, M., Lotfy, Kh.: The influence of gravity on 2-D problem of two temperature generalized thermoelastic medium with thermal relaxation. J. Comput. Theor. Nanosci. 12(9), 2587–2600 (2015)

    Article  Google Scholar 

  9. Maruszewski, B.: Electro-magneto-thermo-elasticity of extrinsic semiconductors, classical irreversible thermodynamic approach. Arch. Mech. 38, 71–82 (1986)

    MATH  Google Scholar 

  10. Maruszewski, B.: Electro-magneto-thermo-elasticity of extrinsic semiconductors, extended irreversible thermodynamic approach. Arch. Mech. 38, 83–95 (1986)

    MATH  Google Scholar 

  11. Maruszewski, B.: Coupled evolution equations of deformable semiconductors. Int. J. Engng. Sci. 25, 145–153 (1987)

    Article  Google Scholar 

  12. Sharma, J.N., Thakur, N.: Plane harmonic elasto-thermodiffusive waves in semiconductor materials. J. Mech. Mater. Struct. 1(5), 813–835 (2006)

    Article  Google Scholar 

  13. Mandelis, A.: Photoacoustic and Thermal Wave Phenomena in Semiconductors. Elsevier, United States (1987)

    Google Scholar 

  14. Almond, D., Patel, P.: Photothermal Science and Techniques. Springer Science & Business Media, Berlin, Germany (1996)

    Google Scholar 

  15. Gordon, J., Leite, R., Moore, R., Porto, S., Whinnery, J.R.: Long-transient effects in lasers with inserted liquid samples. Bull. Am. Phys. Soc. 119, 501 (1964)

    Google Scholar 

  16. Lotfy, Kh.: Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium. SILICON 11(4), 1863–1873 (2019)

    Article  Google Scholar 

  17. Kh, Lotfy, Tantawi, R.S.: Photo-thermal-elastic interaction in a functionally graded material (FGM) and magnetic field. Silicon 12(2), 295–303 (2020)

    Article  Google Scholar 

  18. Lotfy, Kh.: A novel model of magneto photothermal diffusion (MPD) on polymer nano-composite semiconductor with initial stress. Waves Random Complex Media 31(1), 83–100 (2021)

    Article  MathSciNet  Google Scholar 

  19. Yong-Feng, L.: Square-shaped temperature distribution induced by a Gaussian-shaped laser beam. Appl. Surf. Sci. 81(3), 357–364 (1994)

    Article  Google Scholar 

  20. Aldwoah, K., Lotfy, Kh., Abdelwaheb Mhemdi, A., El-Bary,: A novel magneto-photo-elasto-thermodiffusion electrons-holes model of excited semiconductor. Case Stud. Therm. Eng. 32, 101877 (2022)

    Article  Google Scholar 

  21. Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geoph. 91, 134–147 (1971)

    Article  Google Scholar 

  22. Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Rivista del Nuovo cimento 1, 161–198 (1971)

    Article  Google Scholar 

  23. Caputo, M.: Vibrations of an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soc. Am. 56, 897–904 (1974)

    Article  Google Scholar 

  24. Povstenko, Y.Z.: Fractional heat conduction equation and associated thermal stress. J. Therm. Stress. 28, 83–102 (2005)

    Article  MathSciNet  Google Scholar 

  25. Rabotnov, Yu.N.: Creep of Structural Elements. Nauka, Moscow (1966) [in Russian]

    MATH  Google Scholar 

  26. Mainardi, F.: Applications of fractional calculus in mechanics. In: Rusev, P., Dimovski, I., Kiryakova, V. (eds.) Transforms Method and Special Functions, Bulgarian Academy of Sciences, Sofia, 309–334, (1998).

  27. Ezzat, M.A.: Theory of fractional order in generalized thermoelectric MHD. Appl. Math. Model. 35, 4965–4978 (2011)

    Article  MathSciNet  Google Scholar 

  28. Lotfy, Kh.: A novel solution of fractional order heat equation for photothermal waves in a semiconductor medium with a spherical cavity. Chaos Solitons Fractals 99, 233–242 (2017)

    Article  MathSciNet  Google Scholar 

  29. Hobiny, A., Alzahrani, F., Abbas, I., Marin, M.: The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation. Symmetry 12(4), 602 (2020). https://doi.org/10.3390/sym12040602

    Article  Google Scholar 

  30. Othman, M., Said, S., Marin, M.: A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model. Int. J. Numer. Meth. Heat Fluid Flow 29(12), 4788–4806 (2019)

    Article  Google Scholar 

  31. Marin, M., Lupu, M.: On harmonic vibrations in thermoelasticity of micropolar bodies. J. Vib. Control 4(5), 507–518 (1998)

    Article  MathSciNet  Google Scholar 

  32. Marin, M., Stan, G.: Weak solutions in Elasticity of dipolar bodies with stretch. Carpathian J. Math. 29(1), 33–40 (2013)

    Article  MathSciNet  Google Scholar 

  33. Marin, M., Othman, M., Abbas, I.: An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids. J. Comput. Theor. Nanosci. 12(8), 1594–1598 (2015)

    Article  Google Scholar 

  34. Bhatti, M., Marin, M., Zeeshan, A., Abdelsalam, S.: Recent trends in computational fluid dynamics. Front Phys. (2020). https://doi.org/10.3389/fphy.2020.593111

    Article  Google Scholar 

  35. Abouelregal, A., Marin, M.: The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating. Mathematics 8(7), 1128 (2020)

    Article  Google Scholar 

  36. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  37. Povstenko, Y.: Fractional Thermoelasticity. Springer, New York (2015)

    Book  Google Scholar 

  38. Marin, M.: A domain of influence theorem for microstretch elastic materials. Nonlinear Anal. R.W.A 11(5), 3446–3452 (2010)

    Article  MathSciNet  Google Scholar 

  39. Marin, M.: A partition of energy in thermoelasticity of microstretch bodies. Nonlinear Anal. RWA 11(4), 2436–2447 (2010)

    Article  MathSciNet  Google Scholar 

  40. Abbas, I., Marin, M.: Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse. Iran. J. Sci. Technol.-Trans. Mech. Eng. 42(1), 57–71 (2018)

    Article  Google Scholar 

  41. Youssef, H., El-Bary, A.: Two-temperature generalized thermoelasticity with variable thermal conductivity. J. Therm. Stress. 33, 187–201 (2010)

    Article  Google Scholar 

  42. Abbas, I., Alzahrani, F., Elaiw, A.: A DPL model of photothermal interaction in a semiconductor material. Waves Random Complex Media 29, 328–343 (2019)

    Article  Google Scholar 

  43. Mondal, S., Sur, A.: Photo-thermo-elastic wave propagation in an orthotropic semiconductor with a spherical cavity and memory responses. Waves Random Complex Media 31(6), 1835–1858 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Princess Nourah bint Abdulrahman University for funding this research under Researchers Supporting Project number (PNURSP2022R154) Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

K. L Conceptualization, Methodology, Software, Data curation, E-S Writing- Original draft preparation. A. E-B Supervision, Visualization, Investigation, Software, Validation. All authors: Writing- Reviewing and Editing.

Corresponding author

Correspondence to Kh. Lotfy.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sapa, S., Lotfy, K. & El-Bary, A. Laser short-pulse impact on magneto-photo-thermo-diffusion waves in excited semiconductor medium with fractional heat equation. Acta Mech 233, 3893–3907 (2022). https://doi.org/10.1007/s00707-022-03291-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03291-7

Navigation