Skip to main content
Log in

Laser short-pulse effect on magneto-photo-elasto-thermodiffusion waves of fractional heat equation for non-local excited semiconductor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The impact of the laser pulse is used to investigate the magneto-thermodiffusion waves in the context of photo-thermoelasticity theory. The governing mathematical equations of the non-local excited semiconductor material are used according to the Caputo fractional derivative of the heat equation. The main equations are studied under the influence of slowly magnetic field when the interactions between holes and electrons have occurred. According to the electronic and thermoelastic deformations, the one-dimensional (1D), dimensionless main equations are used to describe the non-local case. In the closed form, the Laplace transform is used with initial conditions to formulate the main ordinary differential equations. The analytical solutions are obtained when some surface non-local semiconductor conditions are applied at the boundary to observe the physical fields. The inverse of the Laplace transform with Riemann-sum approximation is applied numerically to obtain the complete solutions. The simulation of wave propagation of the main fields with some comparisons is obtained graphically and discussed when the physical constants of semiconductor silicon (Si) material are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors are willing to provide the data used in this study upon request.

Abbreviations

\(\lambda ,\,\,\mu \quad \quad \;\) :

Lame’s parameters

\(n_{0}\) :

Electrons concentration at equilibrium

\(h_{0}\) :

Holes concentration at equilibrium

\(T_{0} \;\) :

Absolute temperature

\(\gamma = (3\lambda + 2\mu )\alpha_{t}\) :

The volume coefficient of thermal expansion

\(\sigma_{{{\text{ij}}}}\) :

Stress tensor

\({\uprho }\) :

Medium density

\(\alpha_{t}\) :

The coefficient of linear thermal expansion

\(e = \frac{\partial u}{{\partial x}}\) :

Cubical dilatation

\(\tau_{q}\) and \(\tau_{\theta }\) :

The thermal relaxation times (phase lag)

\(C_{e}\) :

Specific heat

\(K\) :

The thermal conductivity

\(\tau^{*}\) :

The lifetime

\(E_{g}\) :

The energy gap

\(\delta_{n} = (2\mu + 3\lambda )d_{n}\) :

The parameter of electrons elastodiffusive

\(\delta_{h} = (2\mu + 3\lambda )d_{h}\) :

The parameter of holes elastodiffusive

\(d_{n}\) :

The coefficients of electronic deformation

\(d_{h}\) :

The coefficients of hole deformation

\(p\) :

The power intensity

\(\delta\) :

The absorption coefficient

\(\Omega\) :

The pulse parameter

\(\mu_{0}\) :

The magnetic permeability

References

  • Abbas, I., Marin, M.: Analytical solutions of a two-dmensional generalized thermoelastic diffusions problem due to laser pulse. Iran. J. Sci. Technol.-Trans. Mech. Eng. 42(1), 57–71 (2018)

    Article  Google Scholar 

  • Abbas, I., Alzahrani, F., Elaiw, A.: A DPL model of photothermal interaction in a semiconductor material. Waves Rand. Complex Media 29, 328–343 (2019)

    Article  MATH  Google Scholar 

  • Abouelregal, A., Marin, M.: The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating. Mathematics, 8 (7), Art. No. 1128, (2020).

  • Aldwoah, K., Lotfy, Kh., Abdelwaheb Mhemdi, El-Bary, A.: A novel magneto-photo-elasto-thermodiffusion electrons-holes model of excited semiconductor. Case Stud. Thermal Eng. 32, 101877, (2022).

  • Almond, D., Patel, P.: Photothermal science and techniques. Berlin, Germany: Springer Science & Business Media (1996).

  • Bhatti, M., Marin, M., Zeeshan, A., Abdelsalam, S.: Recent trends in computational fluid dynamics. Front Phys., 8. https://doi.org/10.3389/fphy.2020.593111, (2020).

  • Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Caputo, M.: Vibrations of an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soc. Am. 56, 897–904 (1974)

    Article  ADS  MATH  Google Scholar 

  • Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure App. Geoph. 91, 134–147 (1971a)

    Article  ADS  MATH  Google Scholar 

  • Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Rivista Del Nuovo Cimento 1, 161–198 (1971b)

    Article  ADS  Google Scholar 

  • Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39, 355–376 (1986)

    Article  ADS  MATH  Google Scholar 

  • Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  ADS  Google Scholar 

  • Ezzat, M.A.: Theory of fractional order in generalized thermoelectric MHD. Appl. Math. Model. 35, 4965–4978 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Gordon, J., Leite, R., Moore, R., Porto, S., Whinnery, J.R.: Long-transient effects in lasers with inserted liquid samples. Bull. Am. Phys. Soc. 119, 501 (1964)

    Google Scholar 

  • Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  • Hobiny, A., Alzahrani, F., Abbas, I., Marin, M.: The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation. Symmetry 12(4):602. https://doi.org/10.3390/sym12040602, (2020).

  • Lotfy, Kh., Tantawi, R.S.: Photo-thermal-elastic interaction in a functionally graded material (FGM) and magnetic field. Silicon, 12(2), 295–303 (2020).

  • Lord, H., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  ADS  MATH  Google Scholar 

  • Lotfy, Kh.: A novel solution of fractional order heat equation for photothermal waves in a semiconductor medium with a spherical cavity. Chaos, Solitons Fractals 99, 233–242 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lotfy, Kh.: Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium. SILICON 11(4), 1863–1873 (2019)

    Article  Google Scholar 

  • Lotfy, Kh.: A novel model of magneto photothermal diffusion (MPD) on polymer nano-composite semiconductor with initial stress. Waves Rand. Complex Media 31(1), 83–100 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Lotfy, Kh., Abo-Dahab, S.: Two-dimensional problem of two temperature generalized thermoelasticity with normal mode analysis under thermal shock problem. J. Comput. Theor. Nanosci. 12(8), 1709–1719 (2015)

    Article  Google Scholar 

  • Mainardi, F.: Applications of fractional calculus in mechanics. In: P. Rusev, I. Dimovski, V. Kiryakova (Eds.) Transforms method and special functions. Bulgarian Academy of Sciences, Sofia, 309–334, (1998).

  • Mandelis, A.: Photoacoustic and thermal wave phenomena in semiconductors. Elsevier, United States (1987)

    Google Scholar 

  • Marin, M.: A domain of influence theorem for microstretch elastic materials. Nonlinear Anal. RWA, 11 (5), 3446–3452, (2010a).

  • Marin, M.: A partition of energy in thermoelasticity of microstretch bodies. Nonlinear Anal. RWA 11(4), 2436–2447 (2010b)

    Article  MathSciNet  MATH  Google Scholar 

  • Marin, M., Lupu, M.: On harmonicvibrations in thermoelasticity of micropolar bodies. J. Vib. Control 4(5), 507–518 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Marin, M., Stan, G.: Weak solutions in elasticity of dipolar bodies with stretch. Carpathian J. Math. 29(1), 33–40 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Marin, M., Othman, M., Abbas, I.: An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids. J. Comput. Theor. Nanosci. 12(8), 1594–1598 (2015)

    Article  Google Scholar 

  • Maruszewski, B.: Electro-magneto-thermo-elasticity of extrinsic semiconductors, classical irreversible thermodynamic approach. Arch. Mech. 38, 71–82 (1986a)

    MATH  Google Scholar 

  • Maruszewski, B.: Electro-magneto-thermo-elasticity of extrinsic semiconductors, extended irreversible thermodynamic approach. Arch. Mech. 38, 83–95 (1986b)

    MATH  Google Scholar 

  • Maruszewski, B.: Coupled evolution equations of deformable semiconductors. Int. J. Eng. Sci. 25, 145–153 (1987)

    Article  Google Scholar 

  • Othman, M., Lotfy, Kh.: The influence of gravity on 2-D problem of two temperature generalized thermoelastic medium with thermal relaxation. J. Comput. Theor. Nanosci. 12(9), 2587–2600 (2015)

    Article  Google Scholar 

  • Othman, M., Said, S., Marin, M.: A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model. Int. J. Numer. Meth. Heat Fluid Flow 29(12), 4788–4806 (2019)

    Article  Google Scholar 

  • Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  • Povstenko, Y.Z.: Fractional heat conduction equation and associated thermal stress. J. Therm. Stresses 28, 83–102 (2005)

    Article  MathSciNet  Google Scholar 

  • Povstenko, Y.: Fractional Thermoelasticity. Springer, New York (2015)

    Book  MATH  Google Scholar 

  • Rabotnov, Yu.N.: Creep of structural elements. Nauka, Moscow (1966).. (in Russian)

    MATH  Google Scholar 

  • Sharma, J.N., Thakur, N.: Plane harmonic elasto-thermodiffusive waves in semiconductor materials. J. Mech. Mater. Struct. 1(5), 813–835 (2006)

    Article  Google Scholar 

  • Sharma, J., Kumar, V., Chand, D.: Reflection of generalized thermoelastic waves from the boundary of a half-space. J. Therm. Stresses 26, 925–942 (2003)

    Article  Google Scholar 

  • Yong-Feng, L.: Square-shaped temperature distribution induced by a Gaussian-shaped laser beam. Appl. Surf. Sci. 81(3), 357–364 (1994)

    Article  ADS  Google Scholar 

  • Youssef, H., El-Bary, A.: Two-temperature generalized thermoelasticity with variable thermal conductivity. J. Therm. Stresses 33, 187–201 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Princess Nourah bint Abdulrahman University for fund this research under Researchers Supporting Project number (PNURSP2022R229) Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Kh.L: Conceptualization, Methodology, Software, Data curation, WA: Writing—Original draft preparation. AE-B and MAEN: Supervision, Visualization, Investigation, Software, Validation. All authors: Writing- Reviewing and Editing.

Corresponding author

Correspondence to Kh. Lotfy.

Ethics declarations

Conflict of interest

The authors have declared that no Competing Interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhejaili, W., Nasr, M.A.E., Lotfy, K. et al. Laser short-pulse effect on magneto-photo-elasto-thermodiffusion waves of fractional heat equation for non-local excited semiconductor. Opt Quant Electron 54, 833 (2022). https://doi.org/10.1007/s11082-022-04247-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04247-w

Keywords

Navigation