Skip to main content
Log in

Large deformation analysis of a plane curved beam using Jacobi elliptic functions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the large deformation equilibrium equation of the plane arc-curved beam is derived based on the radius of curvature and tangent slope angle of the curved beam. The Jacobi elliptic function solutions of tangent slope angle and geometric configurations of a general curved beam and a curved beam between plates are given, in which the modulus p (or k) of elliptic functions is determined by the vertical external force η and boundary conditions. The nonlinear large deformation characteristics and geometric configurations of the curved beam with different initial installation angles (initial tangent slope angles of beam end) are analyzed in detail. The results show that the force–deformation curve of the curved beam has obvious platform stage, which means that the curved beam can store more energy and produce less reaction force compared with the ordinary elastic structure, and can be used as an energy-absorbing structure for the system subjected to repeated shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Matsuda R&D co., LTD: Shock absorber (metal ball) (in Japanese). http://www.mrd-matsuda.co.jp/airsus_ metal.html.

  2. Born, M.: Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum: unter verschiedenen Grenzbedingungen (Ph.D. thesis), University of Göttingen. (1906)

  3. Bisshopp, K.E., Drucker, D.C.: Large deflection of cantilever beams. Q. Appl. Math. 3(3), 272–275 (1945)

    Article  MathSciNet  Google Scholar 

  4. Frish-Fay, R.: Flexible bars. Butterworths, London (1962)

    MATH  Google Scholar 

  5. Shoup, T.E., McLarnan, C.W.: On the use of the undulating elastica for the analysis of flexible link mechanisms. ASME J. Eng. Ind. 93, 263–267 (1971)

    Article  Google Scholar 

  6. Shoup, T.E.: On the use of the nodal elastica for the analysis of flexible link devices. ASME J. Eng. Ind. 94(3), 871–875 (1972)

    Article  Google Scholar 

  7. Howell, L.L.: Compliant Mechanisms. Wiley-Interscience, New York (2001)

    Google Scholar 

  8. Kimball, C., Tsai, L.W.: Modeling of flexural beams subjected to arbitrary end loads. J. Mech. Design 124(2), 223–235 (2002)

    Article  Google Scholar 

  9. Holst, G.L., Teichert, G.H., Jensen, B.D.: Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms. J. Mech. Design. 133(5), 051002 (2011)

    Article  Google Scholar 

  10. Zhang, A., Chen, G.: A comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms. J. Mech. Robot. 5(2), 021006-021010–10 (2013)

    Article  Google Scholar 

  11. Chucheepsakul, S., Phungpaigram, B.: Elliptic integral solutions of variable-arc-length elastica under an inclined follower force. Z. Angew. Math. Mech. 84(1), 29–38 (2004)

    Article  MathSciNet  Google Scholar 

  12. Humer, A.: Elliptic integral solution of the extensible elastica with a variable length under a concentrated force. Acta Mech. 222, 209–223 (2011)

    Article  Google Scholar 

  13. Humer, A.: Exact solutions for the buckling and postbuckling of shear-deformable beams. Acta Mech. 224, 1493–1525 (2013)

    Article  MathSciNet  Google Scholar 

  14. Humer, A., Pechstein, A.S.: Exact solutions for the buckling and postbuckling of a shear-deformable cantilever subjected to a follower force. Acta Mech. 230, 3889–3907 (2019)

    Article  MathSciNet  Google Scholar 

  15. Pulngern, T., Sudsanguan, T., Athisakul, C., et al.: Elastica of a variable-arc-length circular curved beam subjected to an end follower force, Int. J. Non Linear Mech. 49, 129–136 (2013)

  16. Jin, M., Bao, Z.B.: Extensibility effects on Euler elastica’s stability. J. Elast. 112, 217–232 (2013)

    Article  MathSciNet  Google Scholar 

  17. Wang, J., Chen, J.K., Liao, S.J.: An explicit solution of the large deformation of a cantilever beam under point load at the free tip. J. Comput. Appl. Math. 212(2), 320–330 (2008)

    Article  MathSciNet  Google Scholar 

  18. Lin, K.C., Hsieh, C.M.: The closed form general solutions of 2-D curved laminated beams of variable curvatures. Compos. Struct. 79(4), 606–618 (2007)

    Article  Google Scholar 

  19. Lin, K.C., Lin, C.W., et al.: Finite deformation of 2-D curved beams with variable curvatures. J. Solid Mech. Mater. Eng. 3(6), 876–886 (2009)

    Article  Google Scholar 

  20. Lin, K.C., Lin, C.W.: Finite deformation of 2-D laminated curved beams with variable curvatures. Int. J. Non Linear Mech. 46(10), 1293–1304 (2011)

    Article  Google Scholar 

  21. Domokos, G., Holmes, P., Royce, B.: Constrained Euler buckling. J. Nonlinear Sci. 7, 281–314 (1997)

    Article  MathSciNet  Google Scholar 

  22. Astapov, N.S.: Approximate formulas for deflection of compressed flexible bars. J. Appl. Mech. Tech. Phys. 37(4), 573–576 (1996)

    Article  Google Scholar 

  23. Lessinnes, T., Goriely, A.: Geometric conditions for the positive definiteness of the second variation in one-dimensional problems. Nonlinearity 30(5), 2023 (2017)

    Article  MathSciNet  Google Scholar 

  24. Zakharov, Y.V., Okhotkin, K.G.: Nonlinear bending of thin elastic rods. J. Appl. Mech. Tech. Phys. 43(5), 739–744 (2002)

    Article  Google Scholar 

  25. Zakharov, Y.V., Okhotkin, K.G., Skorobogatov, A.D.: Bending of bars under a follower load. J. Appl. Mech. Tech. Phys. 45(5), 756–763 (2004)

    Article  Google Scholar 

  26. Levyakov, S.V.: Stability analysis of curvilinear configurations of an inextensible elastic rod with clamped ends. Mech Res Commun. 36(5), 612–617 (2009)

    Article  MathSciNet  Google Scholar 

  27. Levyakov, S.V., Kuznetsov, V.V.: Stability analysis of planar equilibrium configurations of elastic rods subjected to end loads. Acta Mech. 211(1–2), 73–87 (2010)

    Article  Google Scholar 

  28. Batista, M.: Analytical treatment of equilibrium configurations of cantilever under terminal loads using Jacobi elliptical functions. Int. J. Solids. Struct. 51(13), 2308–2326 (2014)

    Article  Google Scholar 

  29. Batista, M.: On stability of elastic rod planar equilibrium configurations. Int. J. Solids. Struct. 72(15), 144–152 (2015)

    Article  Google Scholar 

  30. Surana, K.S.: Geometrically non-linear formulation for two dimensional curved beam elements. Comput. Struct. 17(1), 105–114 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin-lei Huo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Yl., Pei, Xs. & Li, My. Large deformation analysis of a plane curved beam using Jacobi elliptic functions. Acta Mech 233, 3497–3510 (2022). https://doi.org/10.1007/s00707-022-03279-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03279-3

Navigation