Skip to main content
Log in

Analysis of Volterra dislocation in half-planes incorporating surface effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An isotropic elastic half-plane weakened by a Volterra dislocation, screw/edge is analyzed. The linear Gurtin–Murdoch surface elasticity theory is utilized to incorporate the surface effects. Therefore, the analysis is also valid for dislocations situated at a nanoscale distance from the boundary. The governing equations are derived in terms of displacement components. These equations are solved by means of the integral transform method. The resultant stress fields exhibit Cauchy as well as hyper-singular terms in the vicinity of dislocations. As the distance from dislocation to half-plane boundary increases, stress components tend to those of classical elasticity theory. Stress contours in the vicinity of screw and edge dislocations and plots of forces acting per unit length of dislocations in a thin elastic half-plane made up of glass substrate reinforced by an iron film are drawn. Stress contours reveal that surface effects magnify the stress field. Moreover, surface effects drastically change the behavior of force on a dislocation which is situated at a nanoscale distance from the stress-free half-plane boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leibfried, G., Dietze, H.: Image force calculations for a screw dislocation. Z. Phys. 126, 290 (1949)

    Google Scholar 

  2. Head, A.K.: The interaction of dislocations and boundaries. Lond. Edinb. Dublin Philos. Mag. J. Sci. 44(348), 92–94 (1953)

    Article  Google Scholar 

  3. Chu, S.N.G.: Screw dislocation in a two-phase isotropic thin film. J. Appl. Phys. 53(4), 3019–3023 (1982). https://doi.org/10.1063/1.331043

    Article  Google Scholar 

  4. Bai, J., Wang, S.: Screw dislocation equations in a thin film and surface effects. Int. J. Plast. 87, 181–203 (2016). https://doi.org/10.1016/j.ijplas.2016.09.013

    Article  Google Scholar 

  5. Gharahi, A., Dai, M., Schiavone, P.: Screw dislocation in a thin film–substrate in couple stress elasticity. Z. Angew. Math. Phs. 68(2), 1–23 (2017). https://doi.org/10.1007/s00033-017-0774-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, X., Schiavone, P.: Screw dislocation interacting with a biomaterial interface incorporating surface strain gradient elasticity. Eur. J. Mech. A/Solids 53, 254–258 (2015). https://doi.org/10.1016/j.euromechsol.2015.05.010

    Article  MathSciNet  MATH  Google Scholar 

  7. Dai, M., Schiavone, P.: Edge dislocation interacting with a Steigmann–Ogden interface incorporating residual tension. Int. J. Eng. Sci. 139, 62–69 (2019). https://doi.org/10.1016/j.ijengsci.2019.01.009

    Article  MathSciNet  MATH  Google Scholar 

  8. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975). https://doi.org/10.1007/BF00261375

    Article  MathSciNet  MATH  Google Scholar 

  9. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978). https://doi.org/10.1016/0020-7683(78)90008-2

    Article  MATH  Google Scholar 

  10. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  11. Dai, M., Schiavone, P.: Analytic solution for a line edge dislocation in a biomaterial system incorporation interface elasticity. J. Elast. 132, 295–306 (2018). https://doi.org/10.1007/s10659-017-9666-x

    Article  MATH  Google Scholar 

  12. Dai, M., Schiavone, P., Gao, C.-F.: Screw dislocation in a thin film with surface effects. Int. J. Solids Struct. 110–111, 431–440 (2017). https://doi.org/10.1016/j.ijsolstr.2017.01.041

    Article  Google Scholar 

  13. Grekov, M.A., Sergeeva, T.S., Pronina, Y.G., Sedova, O.S.: A periodic set of edge dislocations in an elastic semi-infinite solid with a planar boundary incorporating surface effects. Eng. Fract. Mech. 186, 423–435 (2017). https://doi.org/10.1016/jengfracmech017.11.005

    Article  Google Scholar 

  14. Grekov, M.A., Sergeeva, T.S.: Interaction of edge dislocation array with biomaterial interface incorporating interface elasticity. Int. J. Eng. Sci. (2020). https://doi.org/10.1016/j.ijengsci.2020.103233

    Article  MATH  Google Scholar 

  15. Eremeyev, V.A., Rosi, G., Naili, S.: Surface/interfacial anti-plane waves in solids with surface energy. Mech. Res. Commun. 74, 8–13 (2016). https://doi.org/10.1016/j.mechrescom.2016.02.018

    Article  Google Scholar 

  16. Huang, Z.P., Wang, J.: A theory of hyper-elasticity of multi-phase media with surface/interface energy effect. Acta Mech. 182, 195–210 (2006). https://doi.org/10.1007/s00707-005-0286-3

    Article  MATH  Google Scholar 

  17. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. Adv. Appl. Mech. 42, 50 (2008). https://doi.org/10.1016/S0065-2156(08)00001-X

    Article  Google Scholar 

  18. Gorbushin, N., Eremeyev, V.A., Mishuris, G.: On stress singularity near the tip of crack with surface stresses. Int. J. Eng. Sci. 146, 103183 (2020). https://doi.org/10.1016/j.ijengsci.2019.103183

    Article  MathSciNet  MATH  Google Scholar 

  19. Dai, M., Gharahi, A., Schiavone, P.: Note on the deformation-induced change in the curvature of a material surface in plane deformation. Mech. Res. Commun. 94, 88–90 (2018). https://doi.org/10.1016/j.mechrescom.2018.10.001

    Article  Google Scholar 

  20. Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. A 244(877), 87–112 (1951). https://doi.org/10.1098/rsta.1951.0016

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriar J. Fariborz.

Ethics declarations

Conflict of interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficients in Eq. (29) are

$$ \begin{aligned} A_{1} \left( \omega \right) & = - \frac{\omega }{\Lambda }\left( {4\left[ {\sinh \left( {2\omega h} \right) + 2\omega h} \right] + 2\left( {\kappa + 1} \right)\alpha_{2} \omega \cosh^{2} \left( {\omega h} \right)} \right. \\ & \quad \left. { + \alpha_{1} \omega \left\{ {2\left( {\kappa + 1} \right)\sinh^{2} \left( {\omega h} \right) + \alpha_{2} \omega \left[ {\kappa \sinh \left( {2\omega h} \right) - 2\omega h} \right]} \right\}} \right), \\ A_{2} \left( \omega \right) & = \frac{2}{\Lambda }\left\{ {\omega^{2} h\left[ {\alpha_{1} \left( {\alpha_{2} h\omega^{2} + \kappa + 1} \right) - \left( {\kappa + 1} \right)\alpha_{2} - 4h} \right] + \kappa^{2} - 1} \right\}, \\ A_{3} \left( \omega \right) & = - \frac{{2\omega^{2} }}{\Lambda }\left( {\alpha_{1} \alpha_{2} \omega^{2} - 4} \right), \\ A_{4} \left( \omega \right) & = - \frac{\omega }{\Lambda }\left\{ {4\left( {\sinh \left( {2\omega h} \right) - 2\omega h} \right) + 2\left( {\kappa + 1} \right)\alpha_{2} \omega \sinh^{2} \left( {\omega h} \right)} \right. \\ & \quad \left. { + \alpha_{1} \omega \left[ {2\left( {\kappa + 1} \right)\cosh^{2} \left( {\omega h} \right) + \alpha_{2} \omega \left( {\kappa \sinh \left( {2\omega h} \right) + 2\omega h} \right)} \right]} \right\}, \\ B_{1} \left( \omega \right) & = \frac{1}{\Delta }\left[ {\omega \left( {\alpha_{2} \omega + 2} \right)A_{2} + \left( {\kappa \alpha_{2} \omega + \kappa + 1} \right)\left( {A_{4} - 1} \right)} \right], \\ B_{2} \left( \omega \right) & = \frac{1}{\Delta }\left[ {\omega \left( {\alpha_{1} \omega + 2} \right)A_{2} + \left( {\kappa - 1} \right)\left( {A_{4} - 1} \right)} \right], \\ B_{3} \left( \omega \right) & = - \frac{1}{\Delta }\left[ {\omega \left( {\alpha_{2} \omega + 2} \right)A_{1} + \left( {\kappa \alpha_{2} \omega + \kappa + 1} \right)A_{3} - \omega \left( {\alpha_{2} \omega + 2} \right)} \right], \\ B_{4} \left( \omega \right) & = - \frac{1}{\Delta }\left[ {\omega \left( {\alpha_{1} \omega + 2} \right)\left( {A_{1} - 1} \right) + \left( {\kappa - 1} \right)A_{3} } \right], \\ B_{5} \left( \omega \right) & = \frac{1}{\Delta }\left\{ {\left[ {\omega \left( {\alpha_{2} \omega + 2} \right) - \left( {\kappa + 1} \right)A_{3} } \right],A_{2} + \left[ {\left( {\kappa + 1} \right)A_{1} + \kappa \alpha_{2} \omega } \right] \left( {A_{4} - 1} \right)} \right\}, \\ B_{6} \left( \omega \right) & = - \frac{1}{\Delta }\left\{ {\alpha_{2} \omega^{2} \left( {A_{1} A_{4} - A_{2} A_{3} } \right) + 2\omega \left( {A_{1} - 1} \right) + \left[ {\kappa \alpha_{2} \omega + \left( {\kappa + 1} \right)} \right] A_{3} - \alpha_{2} \omega^{2} A_{4} } \right\}, \\ B_{7} \left( \omega \right) & = \frac{1}{\Delta }\left[ {\left( {2\omega A_{2} - \kappa + 1} \right)A_{3} - \omega \left( {A_{1} - 1} \right)\left( {2A_{4} + \alpha_{1} \omega } \right)} \right] \\ \end{aligned} $$
(A.1)

where

$$ \begin{aligned} \Lambda \left( \omega \right) & = \omega \sinh \left( {2\omega h} \right)\left\{ {4\left[ {\cosh \left( {2\omega h} \right) + \kappa } \right]{\text{csch}} \left( {2\omega h} \right) + \left( {\kappa + 1} \right)\alpha_{2} \omega + \alpha_{1} \omega \left[ {\kappa \alpha_{2} \omega \tanh \left( {\omega h} \right) + \kappa + 1} \right]} \right\}, \\ \Delta \left( \omega \right) & = - \left( {\kappa + 1} \right)\omega \left[ {A_{1} A_{4} - A_{2} A_{3} - \left( {A_{1} + A_{4} } \right) + 1} \right]. \\ \end{aligned} $$
(A.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, M., Vafa, J.P. & Fariborz, S.J. Analysis of Volterra dislocation in half-planes incorporating surface effects. Acta Mech 233, 2335–2350 (2022). https://doi.org/10.1007/s00707-022-03223-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03223-5

Navigation