Skip to main content
Log in

Axisymmetric vibration of a soft elastic rod with surface tension-induced residual stress

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper studies the axisymmetric vibration of a soft elastic rod with surface tension based on the modified Gurtin–Murdoch model. In contrast to the original Gurtin–Murdoch model (GM model) in which surface tension is treated as a finite value while the residual stress in the bulk induced by it is however treated as an infinitesimal quantity, the present modified model supposes both to be finite values. In addition to the effects of surface tension-induced residual stress in the bulk, those of the surface inertia and bulk axial prestress are incorporated in the present model, and particularly the dispersion relations are derived analytically for the cases of incompressible rods. Comparative results are given for the present model, the original GM model, and the classical elasticity model without surface tension, which reveal that the surface tension-induced residual stress in the bulk would play a crucial role in predicting the frequency of vibration of the rod when the dimensionless parameter (σ0/μR) ≥ 0.3, where (μ, R, σ0) are the shear modulus, the radius, and surface tension of the rod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li, Z., Tan, H.H., Jagadish, C., Fu, L.: III–V semiconductor single nanowire solar cells: a review. Adv. Mater. Technol. 3, 1800005 (2018). https://doi.org/10.1002/admt.201800005

    Article  Google Scholar 

  2. Sannicolo, T., Lagrange, M., Cabos, A., Celle, C., Simonato, J.-P., Bellet, D.: Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12, 6052–6075 (2016). https://doi.org/10.1002/smll.201602581

    Article  Google Scholar 

  3. Wang, W.C., Zhou, B., Xu, S.H., Yang, Z.M., Zhang, Q.Y.: Recent advances in soft optical glass fiber and fiber lasers. Prog. Mater. Sci. 101, 90–171 (2019). https://doi.org/10.1016/j.pmatsci.2018.11.003

    Article  Google Scholar 

  4. Nasr Esfahani, M., Alaca, B.E.: A review on size-dependent mechanical properties of nanowires. Adv. Eng. Mater. 21, 1900192 (2019). https://doi.org/10.1002/adem.201900192

    Article  Google Scholar 

  5. Gurtin, E., Murdoch, M.A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  6. Gurtin, M.E., Murdoch, A.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978). https://doi.org/10.1016/0020-7683(78)90008-2

    Article  MATH  Google Scholar 

  7. Peng, X.L., Huang, G.Y.: Elastic vibrations of a cylindrical nanotube with the effect of surface stress and surface inertia. Phys. E Low Dimens. Syst. Nanostruct. 54, 98–102 (2013). https://doi.org/10.1016/j.physe.2013.06.009

    Article  Google Scholar 

  8. Huang, G.Y., Kang, Y.L.: Acoustic vibrations of a circular nanowire by considering the effect of surface. J. Appl. Phys. 110, 10–15 (2011). https://doi.org/10.1063/1.3610498

    Article  Google Scholar 

  9. Chen, W.Q., Wu, B., Zhang, C.L., Zhang, C.: On wave propagation in anisotropic elastic cylinders at nanoscale: surface elasticity and its effect. Acta Mech. 225, 2743–2760 (2014). https://doi.org/10.1007/s00707-014-1211-4

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu, L.M., Fan, H.: Torsional waves in nanowires with surface elasticity effect. Acta Mech. 227, 1783–1790 (2016). https://doi.org/10.1007/s00707-016-1607-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu, L.M., Fan, H., Zhou, Y.F.: Torsional wave in a circular micro-tube with clogging attached to the inner surface. Acta Mech. Solida Sin. 30, 299–305 (2017). https://doi.org/10.1016/j.camss.2017.06.001

    Article  Google Scholar 

  12. Eremeyev, V.A., Rosi, G., Naili, S.: Transverse surface waves on a cylindrical surface with coating. Int. J. Eng. Sci. 147, 103188 (2020). https://doi.org/10.1016/j.ijengsci.2019.103188

    Article  MathSciNet  MATH  Google Scholar 

  13. Andreotti, B., Bäumchen, O., Boulogne, F., Daniels, K.E., Dufresne, E.R., Perrin, H., Salez, T., Snoeijer, J.H., Style, R.W.: Solid capillarity: when and how does surface tension deform soft solids? Soft Matter 12, 2993–2996 (2016). https://doi.org/10.1039/C5SM03140K

    Article  Google Scholar 

  14. Xu, S., Li, P., Lu, Y.: In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires. Nano Res. 11, 625–632 (2018). https://doi.org/10.1007/s12274-017-1667-3

    Article  Google Scholar 

  15. Wang, G.F., Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 1–4 (2007). https://doi.org/10.1063/1.2746950

    Article  Google Scholar 

  16. Gurtin, M.E., Markenscoff, X., Thurston, R.N.: Effect of surface stress on the natural frequency of thin crystals. Appl. Phys. Lett. 29, 529–530 (1976). https://doi.org/10.1063/1.89173

    Article  Google Scholar 

  17. Yue, Y.M., Ru, C.Q., Xu, K.Y.: Modified von Kármán equations for elastic nanoplates with surface tension and surface elasticity. Int. J. Non-Linear. Mech. 88, 67–73 (2017). https://doi.org/10.1016/j.ijnonlinmec.2016.10.013

    Article  Google Scholar 

  18. Rouhi, H., Ansari, R., Darvizeh, M.: Nonlinear free vibration analysis of cylindrical nanoshells based on the Ru model accounting for surface stress effect. Int. J. Mech. Sci. 113, 1–9 (2016). https://doi.org/10.1016/j.ijmecsci.2016.04.004

    Article  MATH  Google Scholar 

  19. Wang, J., Gao, Y., Ng, M.Y., Chang, Y.C.: Radial vibration of ultra-small nanoparticles with surface effects. J. Phys. Chem. Solids. 85, 287–292 (2015). https://doi.org/10.1016/j.jpcs.2015.06.005

    Article  Google Scholar 

  20. Zhang, L., Ru, C.Q.: Free vibration of biopolymer spherical shells of high structural heterogeneity. AIP Adv. (2018). https://doi.org/10.1063/1.5036672

    Article  Google Scholar 

  21. Song, F., Huang, G.L., Varadan, V.K.: Study of wave propagation in nanowires with surface effects by using a high-order continuum theory. Acta Mech. 209, 129–139 (2010). https://doi.org/10.1007/s00707-009-0156-5

    Article  MATH  Google Scholar 

  22. Huang, Z.X.: Torsional wave and vibration subjected to constraint of surface elasticity. Acta Mech. 229, 1171–1182 (2018). https://doi.org/10.1007/s00707-017-2047-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Lachut, M.J., Sader, J.E.: Effect of surface stress on the stiffness of cantilever plates. Phys. Rev. Lett. 99, 206102 (2007). https://doi.org/10.1103/PhysRevLett.99.206102

    Article  Google Scholar 

  24. Karabalin, R.B., Villanueva, L.G., Matheny, M.H., Sader, J.E., Roukes, M.L.: Stress-induced variations in the stiffness of micro- and nanocantilever beams. Phys. Rev. Lett. 108, 1–5 (2012). https://doi.org/10.1103/PhysRevLett.108.236101

    Article  Google Scholar 

  25. Ru, C.Q.: A strain-consistent elastic plate model with surface elasticity. Contin. Mech. Thermodyn. 28, 263–273 (2016). https://doi.org/10.1007/s00161-015-0422-9

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, G., Gao, C.F., Ru, C.Q.: A study on the Gurtin–Murdoch model for spherical solids with surface tension. ZAMP Zeitschrift für Angew. Math. und Phys. 72, 95 (2021). https://doi.org/10.1007/s00033-021-01502-0

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, G., Gao, C.F., Ru, C.Q.: Surface tension-driven instability of a soft elastic rod revisited. Int. J. Solids Struct. 241, 111491 (2022). https://doi.org/10.1016/j.ijsolstr.2022.111491

    Article  Google Scholar 

  28. Ru, C.Q.: Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci. China Phys. Mech. Astron. 53, 536–544 (2010). https://doi.org/10.1007/s11433-010-0144-8

    Article  Google Scholar 

  29. Wang, S., Li, X., Yi, X., Duan, H.: Morphological changes of nanofiber cross-sections due to surface tension. Extrem. Mech. Lett. 44, 101211 (2021). https://doi.org/10.1016/j.eml.2021.101211

    Article  Google Scholar 

  30. Dai, M., Yang, H.B., Schiavone, P.: Stress concentration around an elliptical hole with surface tension based on the original Gurtin–Murdoch model. Mech. Mater. 135, 144–148 (2019). https://doi.org/10.1016/j.mechmat.2019.05.009

    Article  Google Scholar 

  31. Shao, X., Saylor, J.R., Bostwick, J.B.: Extracting the surface tension of soft gels from elastocapillary wave behavior. Soft Matter 14, 7347–7353 (2018). https://doi.org/10.1039/c8sm01027g

    Article  Google Scholar 

  32. Mora, S., Phou, T., Fromental, J.M., Pismen, L.M., Pomeau, Y.: Capillarity driven instability of a soft solid. Phys. Rev. Lett. 105, 3–7 (2010). https://doi.org/10.1103/PhysRevLett.105.214301

    Article  Google Scholar 

  33. Lu, P., Lee, H.P., Lu, C., O’Shea, S.J.: Surface stress effects on the resonance properties of cantilever sensors. Phys. Rev. B. 72, 085405 (2005). https://doi.org/10.1103/PhysRevB.72.085405

    Article  Google Scholar 

  34. Nemat-Nasser, S.: On local stability of a finitely deformed solid subjected to follower type loads. Q. Appl. Math. 26, 119–129 (1968). https://doi.org/10.1090/qam/99863

    Article  MATH  Google Scholar 

  35. Hill, R.: On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids. 5, 229–241 (1957). https://doi.org/10.1016/0022-5096(57)90016-9

    Article  MathSciNet  MATH  Google Scholar 

  36. Bažant, Z.P.: A correlation study of formulations of incremental deformation and stability of continuous bodies. J. Appl. Mech. 38, 919–928 (1971). https://doi.org/10.1115/1.3408976

    Article  MATH  Google Scholar 

  37. Renton, J.D.: An analysis of the static and dynamic instability of thick cylinders. Int. J. Mech. Sci. 21, 747–754 (1979). https://doi.org/10.1016/0020-7403(79)90055-9

    Article  MATH  Google Scholar 

  38. Nedin, R., Vatulyan, A.: Inverse problem of non-homogeneous residual stress identification in thin plates. Int. J. Solids Struct. 50, 2107–2114 (2013). https://doi.org/10.1016/j.ijsolstr.2013.03.008

    Article  Google Scholar 

  39. Rubin, D., Krempl, E.: Introduction to Continuum Mechanics. Elsevier, New York (2010)

    MATH  Google Scholar 

  40. Ciarletta, P., Ben Amar, M.: Peristaltic patterns for swelling and shrinking of soft cylindrical gels. Soft Matter 8, 1760–1763 (2012). https://doi.org/10.1039/c2sm06851f

    Article  Google Scholar 

  41. Chippada, U., Yurke, B., Langrana, N.A.: Simultaneous determination of Young’s modulus, shear modulus, and Poisson’s ratio of soft hydrogels. J. Mater. Res. 25, 545–555 (2010). https://doi.org/10.1557/jmr.2010.0067

    Article  Google Scholar 

  42. Khan, M.Y., Samanta, A., Ojha, K., Mandal, A.: Interaction between aqueous solutions of polymer and surfactant and its effect on physicochemical properties. Asia-Pacific J. Chem. Eng. 3, 579–585 (2008). https://doi.org/10.1002/apj.212

    Article  Google Scholar 

  43. Taffetani, M., Ciarletta, P.: Beading instability in soft cylindrical gels with capillary energy: Weakly non-linear analysis and numerical simulations. J. Mech. Phys. Solids. 81, 91–120 (2015). https://doi.org/10.1016/j.jmps.2015.05.002

    Article  MathSciNet  Google Scholar 

  44. Xuan, C., Biggins, J.: Finite-wavelength surface-tension-driven instabilities in soft solids, including instability in a cylindrical channel through an elastic solid. Phys. Rev. E. 94, 023107 (2016). https://doi.org/10.1103/PhysRevE.94.023107

    Article  Google Scholar 

  45. Wang, L.: Axisymmetric instability of soft elastic tubes under axial load and surface tension. Int. J. Solids Struct. 191–192, 341–350 (2020). https://doi.org/10.1016/j.ijsolstr.2020.01.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the supports from the National Natural Science Foundation of China (11872203), Joint Fund of Advanced Aerospace Manufacturing Technology Research (U1937601), National Natural Science Foundation of China for Creative Research Groups (No. 51921003), China Postdoctoral Science Foundation (2021M701705), and an Initiation Research Project Funded by Jinling Institute of Technology (040521400118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengyu Pei or Cun-Fa Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Qi, L., Dai, M. et al. Axisymmetric vibration of a soft elastic rod with surface tension-induced residual stress. Acta Mech 233, 2405–2413 (2022). https://doi.org/10.1007/s00707-022-03221-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03221-7

Navigation