Skip to main content
Log in

New micromechanical model in time domain for linear viscoelastic composites with ellipsoidal reinforcements

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An innovative micromechanical approach developed directly in the time domain is presented for aging linear viscoelastic heterogeneous materials. The viscoelastic behavior is described by a relaxation kernel of a Volterra integral type. Using the technique of Green's function, a new integral formulation is developed to obtain two integral equations in the heterogeneous viscoelastic problem. Applying the inclusion Eshelby model, a new concentration equation gives the average strain of the inclusion. The model presents the exact solution of the strain field for anisotropic aging viscoelastic ellipsoidal inclusion embedded in an isotropic aging viscoelastic matrix. The model is evaluated by comparisons with the existing results of the literature, either analytically or numerically. The effective relaxation behavior of a two-phase composite is obtained using a Mori-Tanaka homogenization scheme. The shape effect and the viscoelastic behavior of inclusion are analyzed to illustrate the method's capabilities providing time-domain accurate numerical results with reduced processing time and no large memory space for numerical computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Software application Mathematica.

References

  1. Suquet, P.: Elements of homogenization for inelastic solid mechanics, homogenization techniques for composite media. Lect. Notes Phys. 272, 193 (1985)

    Article  Google Scholar 

  2. Mandel, J.: Cours de mécanique des milieux continus, (1966)

  3. Hashin, Z.: The inelastic inclusion problem. Int. J. Eng. Sci. 7, 11–36 (1969). https://doi.org/10.1016/0020-7225(69)90020-2

    Article  MATH  Google Scholar 

  4. Laws, N., McLaughlin, R.: Self-consistent estimates for the viscoelastic creep compliances of composite materials. Proc. R. Soc. London. A. Math. Phys. Sci. 359, 251–273 (1978)

    MathSciNet  Google Scholar 

  5. Fisher, F.T., Brinson, L.C.: Viscoelastic interphases in polymer-matrix composites: theoretical models and finite-element analysis. Compos. Sci. Technol. 61, 731–748 (2001). https://doi.org/10.1016/S0266-3538(01)00002-1

    Article  Google Scholar 

  6. Friebel, C., Doghri, I., Legat, V.: General mean-field homogenization schemes for viscoelastic composites containing multiple phases of coated inclusions. Int. J. Solids Struct. 43, 2513–2541 (2006). https://doi.org/10.1016/j.ijsolstr.2005.06.035

    Article  MATH  Google Scholar 

  7. Weng, G.J.: Self-consistent determination of time-dependent behavior of metals. Am. Soc. Mech. Eng. D 5, 41–46 (1981)

    MATH  Google Scholar 

  8. Kröner, E.: On the plastic deformation of polycrystals. Acta Metall. 9, 155–161 (1961)

    Article  Google Scholar 

  9. Paquin, A., Sabar, H., Berveiller, M.: Integral formulation and self-consistent modelling of elastoviscoplastic behavior of heterogeneous materials. Arch. Appl. Mech. 69, 14–35 (1999). https://doi.org/10.1007/s004190050201

    Article  MATH  Google Scholar 

  10. Sabar, H., Berveiller, M., Favier, V., Berbenni, S.: A new class of micro-macro models for elastic-viscoplastic heterogeneous materials. Int. J. Solids Struct. 39, 3257–3276 (2002). https://doi.org/10.1016/S0020-7683(02)00256-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Coulibaly, M., Sabar, H.: Micromechanical modeling of linear viscoelastic behavior of heterogeneous materials. Arch. Appl. Mech. 81, 345–359 (2011). https://doi.org/10.1007/s00419-010-0411-1

    Article  MATH  Google Scholar 

  12. Dinzart, F., Sabar, H.: Homogenization of the viscoelastic heterogeneous materials with multi-coated reinforcements: an internal variables formulation. Arch. Appl. Mech. 84, 715–730 (2014). https://doi.org/10.1007/s00419-014-0828-z

    Article  MATH  Google Scholar 

  13. Berbenni, S., Dinzart, F., Sabar, H.: A new internal variables homogenization scheme for linear viscoelastic materials based on an exact Eshelby interaction law. Mech. Mater. 81, 110–124 (2015). https://doi.org/10.1016/j.mechmat.2014.11.003

    Article  Google Scholar 

  14. Coulibaly, M., Sabar, H.: New integral formulation and self-consistent modeling of elastic-viscoplastic heterogeneous materials. Int. J. Solids Struct. 48, 753–763 (2011). https://doi.org/10.1016/j.ijsolstr.2010.11.012

    Article  MATH  Google Scholar 

  15. Lahellec, N., Suquet, P.: Effective behavior of linear viscoelastic composites: a time-integration approach. Int. J. Solids Struct. 44, 507–529 (2007). https://doi.org/10.1016/j.ijsolstr.2006.04.038

    Article  MathSciNet  MATH  Google Scholar 

  16. Agoras, M., Avazmohammadi, R., Ponte Castañeda, P.: Incremental variational procedure for elasto-viscoplastic composites and application to polymer- and metal-matrix composites reinforced by spheroidal elastic particles. Int. J. Solids Struct. 97, 668–686 (2016). https://doi.org/10.1016/j.ijsolstr.2016.04.008

    Article  Google Scholar 

  17. Ricaud, J., Masson, R.: Effective properties of linear viscoelastic heterogeneous media: internal variables formulation and extension to aging behaviours. Int. J. Solids Struct. 46, 1599–1606 (2009). https://doi.org/10.1016/j.ijsolstr.2008.12.007

    Article  MATH  Google Scholar 

  18. Masson, R., Brenner, R., Castelnau, O.: Incremental homogenization approach for aging viscoelastic polycrystals. Comptes Rendus Mec. 340, 378–386 (2012). https://doi.org/10.1016/j.crme.2012.02.021

    Article  Google Scholar 

  19. Masson, R., Seck, M.E.B., Fauque, J., Gărăjeu, M.: A modified secant formulation to predict the overall behavior of elasto-viscoplastic particulate composites. J. Mech. Phys. Solids. (2020). https://doi.org/10.1016/j.jmps.2020.103874

    Article  MathSciNet  Google Scholar 

  20. Doghri, I., Adam, L., Bilger, N.: Mean-field homogenization of elasto-viscoplastic composites based on a general incrementally affine linearization method. Int. J. Plast. 26, 219–238 (2010). https://doi.org/10.1016/j.ijplas.2009.06.003

    Article  MATH  Google Scholar 

  21. Cotelo, J., Das, S., Ponte Castañeda, P.: A differential homogenization method for estimating the macroscopic response and field statistics of particulate viscoelastic composites. Int. J. Solids Struct. 204–205, 199–219 (2020). https://doi.org/10.1016/j.ijsolstr.2020.07.019

    Article  Google Scholar 

  22. Volterra, V.: Theory of Functionals and of Integral and Integro-Differential Equations. Dover Publications (1959)

  23. Mandel, J.: Sur les corps viscoelastiques lineaires dont les proprietes dependent de l’age. C. R. Hebd. Seances Acad. Sci. 247, 175–178 (1958)

    MATH  Google Scholar 

  24. Sanahuja, J.: Effective behaviour of aging linear viscoelastic composites: homogenization approach. Int. J. Solids Struct. 50, 2846–2856 (2013). https://doi.org/10.1016/j.ijsolstr.2013.04.023

    Article  Google Scholar 

  25. Bažant, Z.P.: Material models for structural creep analysis. Math. Model. Creep shrinkage Concr. 2, 99–215 (1988)

    Google Scholar 

  26. Honorio, T., Bary, B., Sanahuja, J., Benboudjema, F.: Effective properties of n-coated composite spheres assemblage in an aging linear viscoelastic framework. Int. J. Solids Struct. 124, 1–13 (2017). https://doi.org/10.1016/j.ijsolstr.2017.04.028

    Article  Google Scholar 

  27. Barthélémy, J.F., Giraud, A., Sanahuja, J., Sevostianov, I.: Effective properties of aging linear viscoelastic media with spheroidal inhomogeneities. Int. J. Eng. Sci. (2019). https://doi.org/10.1016/j.ijengsci.2019.05.015

    Article  MATH  Google Scholar 

  28. Barthélémy, J.F., Giraud, A., Lavergne, F., Sanahuja, J.: The Eshelby inclusion problem in aging linear viscoelasticity. Int. J. Solids Struct. 97, 530–542 (2016). https://doi.org/10.1016/j.ijsolstr.2016.06.035

    Article  Google Scholar 

  29. Huet, C.: Relations between creep and relaxation functions in nonlinear viscoelasticity with or without aging. J. Rheol. 29, 245–257 (1985). https://doi.org/10.1122/1.549789

    Article  Google Scholar 

  30. Volterra, V.: Leçons sur les fonctions de lignes. (1913)

  31. Salençon, J.: Viscoélasticité linéaire: appliquée au calcul des structures. Ecole Nationale des Ponts et Chaussées (1996)

  32. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London. 7, 376–396 (1957). https://doi.org/10.1017/S0305004100053366

    Article  MathSciNet  MATH  Google Scholar 

  33. Mura, T.: Micromechanics of Defects in Solids. Dordrecht (1987)

  34. Riesz, M., Hardy, G.: The General Theory of Dirichlet’s Series. The University Press (1915)

  35. Roscoe, R.: Mechanical models for the representation of visco-elastic properties. Br. J. Appl. Phys. 1, 171 (1950)

    Article  Google Scholar 

  36. Kröner, E.: Modified Green functions in the theory of heterogeneous and/or anisotropic linearly elastic media. In: Micromechanics and inhomogeneity. pp. 197–211. Springer, New York (1990)

  37. Walpole, L.J.: Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. Proc. R. Soc. London. A. Math. Phys. Sci. 391, 149–179 (1984). https://doi.org/10.1098/rspa.1984.0008

    Article  MathSciNet  MATH  Google Scholar 

  38. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  39. Chen, Q., Wang, G., Chen, X., Geng, J.: Finite-volume homogenization of elastic/viscoelastic periodic materials. Compos. Struct. 182, 457–470 (2017). https://doi.org/10.1016/j.compstruct.2017.09.044

    Article  Google Scholar 

  40. Cruz-González, O.L., Rodríguez-Ramos, R., Otero, J.A., Ramírez-Torres, A., Penta, R., Lebon, F.: On the effective behavior of viscoelastic composites in three dimensions. Int. J. Eng. Sci. (2020). https://doi.org/10.1016/j.ijengsci.2020.103377

    Article  MathSciNet  MATH  Google Scholar 

  41. Skudra, A.M., Auzukalns, Y.: V: Creep and long-time strength of unidirectional reinforced plastics in compression. Polym. Mech. 6, 718–722 (1970)

    Article  Google Scholar 

  42. Luciano, R., Barbero, E.J.: Analytical expressions for the relaxation moduli of linear viscoelastic composites with periodic microstructure. J. Appl. Mech. Trans. ASME. 62, 786–793 (1995). https://doi.org/10.1115/1.2897015

    Article  MATH  Google Scholar 

  43. Rodríguez-Ramos, R., Otero, J.A., Cruz-González, O.L., Guinovart-Díaz, R., Bravo-Castillero, J., Sabina, F.J., Padilla, P., Lebon, F., Sevostianov, I.: Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method. Int. J. Solids Struct. 190, 281–290 (2020). https://doi.org/10.1016/j.ijsolstr.2019.11.014

    Article  Google Scholar 

  44. Cavalcante, M.A.A., Marques, S.P.C.: Homogenization of periodic materials with viscoelastic phases using the generalized FVDAM theory. Comput. Mater. Sci. 87, 43–53 (2014). https://doi.org/10.1016/j.commatsci.2014.01.053

    Article  Google Scholar 

  45. Luk-Cyr, J., Crochon, T., Li, C., Lévesque, M.: Interconversion of linearly viscoelastic material functions expressed as Prony series: a closure. Mech. Time-Dependent Mater. 17, 53–82 (2013). https://doi.org/10.1007/s11043-012-9176-y

    Article  Google Scholar 

  46. Nguyen, S.T.: Effect of pore shape on the effective behavior of viscoelastic porous media. Int. J. Solids Struct. 125, 161–171 (2017). https://doi.org/10.1016/j.ijsolstr.2017.07.008

    Article  Google Scholar 

Download references

Funding

The authors are grateful to the French Ministry of Higher Education for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Dinzart.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Consent for publication

I, Dr. Florence Dinzart, and the co-authors give their consent for the publication of identifiable details, which can include photograph(s) and/or videos and/or case history and/or details within the text (“Material”) to be published in Acta Mechanica.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinzart, F., Torres-Costa, L.M. & Sabar, H. New micromechanical model in time domain for linear viscoelastic composites with ellipsoidal reinforcements. Acta Mech 233, 2009–2029 (2022). https://doi.org/10.1007/s00707-022-03208-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03208-4

Navigation