Skip to main content
Log in

Integrating hydrodynamic and acoustic cell separation in a hybrid microfluidic device: a numerical analysis

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Cell separation microfluidic devices have evolved into a multitude of biomedical and clinical research. Nonetheless, many critical issues remain in the way of achieving an excellent separation of target cells from a heterogeneous sample. Parallel to the abundant experimental studies related to the hybrid microfluidic methods, it is easy to perceive the lack of numerical investigations in order to optimize the separation process and its accuracy. In this study, for the first time to the best of our knowledge, a hybrid system by integrating acoustophoresis and pinched-flow fractionation (PFF) is proposed to achieve a viable system for a wide-range, precise separation. Employing the ultrasound field would result in remarkably enhanced amplification of separation distance in the conventional PFF microchannels. This active–passive method provides many advantages and expunges the limitations of each method. A noticeable flaw in the acoustic cell separation is the confined amount of driving voltage because of the irreparable effects of high-voltage on the biological cells. On the other hand, in the PFF method, particle separation with a perfect resolution cannot be attained. The novel device presented in this work eradicates the aforementioned issues and provides an accurate, continuous separation with a lower demanded RF signal amplitude in comparison with the conventional devices. The results show that a high-resolution separation can be attained by applying only 2 V to the system with a total flow rate of 5 μl/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zandecki, M., Genevieve, F., Gerard, J., Godon, A.: Spurious counts and spurious results on haematology analysers: a review. Part II: White blood cells, red blood cells, haemoglobin, red cell indices and reticulocytes. Int. J. Lab. Hematol. 29(1), 21–41 (2007)

    Google Scholar 

  2. Morrell, C.N., Aggrey, A.A., Chapman, L.M., Modjeski, K.L.: Emerging roles for platelets as immune and inflammatory cells. Blood 123(18), 2759–2767 (2014)

    Article  Google Scholar 

  3. R. Nasiri, A. Shamloo, J. Akbari, P. Tebon, M.R. Dokmeci, S. Ahadian, Design and simulation of an integrated centrifugal microfluidic device for CTCs separation and cell lysis, Micromachines. 11 (7) (2020).

  4. Zhang, J., Yuan, D., Sluyter, R., Yan, S., Zhao, Q., Xia, H., Tan, S.H., Nguyen, N.T., Li, W.: High-throughput separation of white blood cells from whole blood using inertial microfluidics. IEEE Trans. Biomed. Circuits Syst. 11(6), 1422–1430 (2017)

    Article  Google Scholar 

  5. Madadelahi, M., Ghazimirsaeed, E., Shamloo, A.: Design and fabrication of a two-phase diamond nanoparticle aided fast PCR device. Anal. Chim. Acta. 1068, 28–40 (2019)

    Article  Google Scholar 

  6. M.A. Bijarchi, A. Favakeh, E. Sedighi, M.B. Shafii, Ferrofluid droplet manipulation using an adjustable alternating magnetic field, Sensors Actuators, A Phys. 301 (2020) 111753.

  7. Bijarchi, M.A., Dizani, M., Honarmand, M., Shafii, M.B.: Splitting dynamics of ferrofluid droplets inside a microfluidic T-junction using a pulse-width modulated magnetic field in micro-magnetofluidics. Soft Matter 17, 1317–1329 (2021)

    Article  Google Scholar 

  8. Favakeh, A., Bijarchi, M.A., Shafii, M.B.: Ferrofluid droplet formation from a nozzle using alternating magnetic field with different magnetic coil positions. J. Magn. Magn. Mater. 498, 166134 (2020)

    Article  Google Scholar 

  9. Naghdloo, A., Ghazimirsaeed, E., Shamloo, A.: Numerical simulation of mixing and heat transfer in an integrated centrifugal microfluidic system for nested-PCR amplification and gene detection. Sens. Actuators B Chem. 283(2019), 831–841 (2018)

    Google Scholar 

  10. Madadelahi, M., Shamloo, A.: Droplet-based flows in serpentine microchannels: chemical reactions and secondary flows. Int. J. Multiph. Flow. 97, 186–196 (2017)

    Article  MathSciNet  Google Scholar 

  11. Ghazimirsaeed, E., Madadelahi, M., Dizani, M., Shamloo, A.: Secondary flows, mixing, and chemical reaction analysis of droplet-based flow inside serpentine microchannels with different cross sections. Langmuir 37(17), 5118–5130 (2021)

    Article  Google Scholar 

  12. Amadeh, A., Ghazimirsaeed, E., Shamloo, A., Dizani, M.: Improving the performance of a photonic PCR system using TiO2 nanoparticles. J. Ind. Eng. Chem. 94, 195–204 (2021)

    Article  Google Scholar 

  13. Dao, M., Suresh, S., Huang, T.J., Li, P., Mao, Z., Peng, Z., Zhou, L., Chen, Y., Huang, P.H., Truica, C.I., Drabick, J.J., El-Deiry, W.S.: Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. U. S. A. 112(16), 4970–4975 (2015)

    Article  Google Scholar 

  14. Shamloo, A., Naghdloo, A., Besanjideh, M.: Cancer cell enrichment on a centrifugal microfluidic platform using hydrodynamic and magnetophoretic techniques. Sci. Rep. 11(1), 1–14 (2021)

    Article  Google Scholar 

  15. Pødenphant, M., Ashley, N., Koprowska, K., Mir, K.U., Zalkovskij, M., Bilenberg, B., Bodmer, W., Kristensen, A., Marie, R.: Separation of cancer cells from white blood cells by pinched flow fractionation. Lab Chip. 15(24), 4598–4606 (2015)

    Article  Google Scholar 

  16. Lu, X., Xuan, X.: Inertia-enhanced pinched flow fractionation. Anal. Chem. 87(8), 4560–4565 (2015)

    Article  Google Scholar 

  17. Salafi, T., Zhang, Y., Zhang, Y.: A Review on Deterministic Lateral Displacement for Particle Separation and Detection. Springer, Singapore (2019)

    Book  Google Scholar 

  18. Yan, S., Zhang, J., Yuan, D., Li, W.: Hybrid microfluidics combined with active and passive approaches for continuous cell separation. Electrophoresis 38(2), 238–249 (2017)

    Article  Google Scholar 

  19. Bhagat, A.A.S., Hou, H.W., Li, L.D., Lim, C.T., Han, J.: Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip. 11(11), 1870–1878 (2011)

    Article  Google Scholar 

  20. Lu, X., Xuan, X.: Elasto-inertial pinched flow fractionation for continuous shape-based particle separation. Anal. Chem. 87(22), 11523–11530 (2015)

    Article  Google Scholar 

  21. Ravula, S.K., Branch, D.W., James, C.D., Townsend, R.J., Hill, M., Kaduchak, G., Ward, M., Brener, I.: A microfluidic system combining acoustic and dielectrophoretic particle preconcentration and focusing. Sensors Actuators B Chem. 130(2), 645–652 (2008)

    Article  Google Scholar 

  22. Adams, J.D., P. Th́voz, H. Bruus, H.T. Soh,: Integrated acoustic and magnetic separation in microfluidic channels. Appl. Phys. Lett. 95(25), 254103 (2009)

    Article  Google Scholar 

  23. Beech, J.P., Jönsson, P., Tegenfeldt, J.O.: Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip. 9(18), 2698–2706 (2009)

    Article  Google Scholar 

  24. Ding, X., Li, P., Lin, S.-C.S., Stratton, Z.S., Nama, N., Guo, F., Slotcavage, D., Mao, X., Shi, J., Costanzo, F., Huang, T.J.: Surface acoustic wave microfluidics. Lab Chip. 13(18), 3626–3649 (2013)

    Article  Google Scholar 

  25. Woodside, S.M., Bowen, B.D., Piret, J.M.: Measurement of ultrasonic forces for particle-liquid separations. AIChE J. 43(7), 1727–1736 (1997)

    Article  Google Scholar 

  26. Shi, J., Huang, H., Stratton, Z., Huang, Y., Huang, T.J.: Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip. 9(23), 3354–3359 (2009)

    Article  Google Scholar 

  27. Nilsson, A., Petersson, F., Jönsson, H., Laurell, T.: Acoustic control of suspended particles in micro fluidic chips. Lab Chip. 4(2), 131–135 (2004)

    Article  Google Scholar 

  28. Xie, Y., Mao, Z., Bachman, H., Li, P., Zhang, P., Ren, L., Wu, M., Huang, T.J.: Acoustic cell separation based on density and mechanical properties. J. Biomech. Eng. 142(3), 1–9 (2020)

    Article  Google Scholar 

  29. Ley, M.W.H., Bruus, H.: Three-dimensional numerical modeling of acoustic trapping in glass capillaries. Phys. Rev. Appl. 8(2), 1–15 (2017)

    Article  Google Scholar 

  30. J. van’tOever, J. Herek, F. Mugele, D. vandenEnde, H.L. Offerhaus,: Numerical study of submicroparticle acoustophoresis using higher-order modes in a rectangular microchannel. J. Sound Vib. 415, 169–183 (2018)

    Article  Google Scholar 

  31. Skov, N.R., Sehgal, P., Kirby, B.J., Bruus, H.: Three-dimensional numerical modeling of surface-acoustic-wave devices: acoustophoresis of micro- and nanoparticles including streaming. Phys. Rev. Appl. 12(4), 44028 (2019)

    Article  Google Scholar 

  32. Shamloo, A., Boodaghi, M.: Design and simulation of a microfluidic device for acoustic cell separation. Ultrasonics 84, 234–243 (2018)

    Article  Google Scholar 

  33. Shamloo, A., Parast, F.Y.: Simulation of blood particle separation in a trapezoidal microfluidic device by acoustic force. IEEE Trans. Electron Devices. 66(3), 1495–1503 (2019)

    Article  Google Scholar 

  34. Yamada, M., Nakashima, M., Seki, M.: Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal. Chem. 76(18), 5465–5471 (2004)

    Article  Google Scholar 

  35. Nho, H.W., Yoon, T.H.: Enhanced separation of colloidal particles in an AsPFF device with a tilted sidewall and vertical focusing channels (t-AsPFF-v). Lab Chip. 13(5), 773–776 (2013)

    Article  Google Scholar 

  36. Lee, K.H., Kim, S.B., Lee, K.S., Sung, H.J.: Enhancement by optical force of separation in pinched flow fractionation. Lab Chip. 11(2), 354–357 (2011)

    Article  Google Scholar 

  37. Zhang, J., Yan, S., Alici, G., Nguyen, N.T., Di Carlo, D., Li, W.: Real-time control of inertial focusing in microfluidics using dielectrophoresis (DEP). RSC Adv. 4(107), 62076–62085 (2014)

    Article  Google Scholar 

  38. Shamloo, A., Kamali, A.: Numerical analysis of a dielectrophoresis field-flow fractionation device for the separation of multiple cell types. J. Sep. Sci. 40(20), 4067–4075 (2017)

    Article  Google Scholar 

  39. Di Carlo, D., Irimia, D., Tompkins, R.G., Toner, M.: Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. U. S. A. 104(48), 18892–18897 (2007)

    Article  Google Scholar 

  40. Bruus, H.: Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip. 12(6), 1014–1021 (2012)

    Article  Google Scholar 

  41. Zhang, J., Li, W., Li, M., Alici, G., Nguyen, N.-T.: Particle inertial focusing and its mechanism in a serpentine microchannel. Microfluid. Nanofluidics. 17(2), 305–316 (2014)

    Article  Google Scholar 

  42. Bruus, H.: Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip. 12(1), 20–28 (2012)

    Article  Google Scholar 

  43. Mashhadian, A., Shamloo, A.: Inertial microfluidics: a method for fast prediction of focusing pattern of particles in the cross section of the channel. Anal. Chim. acta 1083, 137–149 (2019)

    Article  Google Scholar 

  44. Shamloo, A., Selahi, A.A., Madadelahi, M.: Designing and modeling a centrifugal microfluidic device to separate target blood cells. J. Micromech. Microeng. 26(3), 035017 (2016)

    Article  Google Scholar 

  45. Asadzade, M., Shamloo, A.: Design and simulation of a novel bipolar plate based on lung-shaped bio-inspired flow pattern for PEM fuel cell. Int. J. Energy Res. 41(12), 1730–1739 (2017)

    Article  Google Scholar 

  46. Shamloo, A., Madadelahi, M., Abdorahimzadeh, S.: Three-dimensional numerical simulation of a novel electroosmotic micromixer. Chem. Eng. Proc. Proc. Intens. 119, 25–33 (2017)

    Article  Google Scholar 

  47. Shamloo, A., Vatankhah, P., Akbari, A.: Analyzing mixing quality in a curved centrifugal micromixer through numerical simulation. Chem. Eng. Proc. Proc. Intens. 116, 9–16 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Shamloo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashkezari, A.H.K., Dizani, M. & Shamloo, A. Integrating hydrodynamic and acoustic cell separation in a hybrid microfluidic device: a numerical analysis. Acta Mech 233, 1881–1894 (2022). https://doi.org/10.1007/s00707-022-03206-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03206-6

Navigation