Skip to main content
Log in

Nonlinear random vibration of functionally graded nanobeams based on the nonlocal strain gradient theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, the nonlinear random vibration of functionally graded (FG) nanobeams resting on a viscoelastic foundation is investigated using the nonlocal strain gradient theory and the regulated equivalent linearization method (RELM). The material properties of the FG nanobeam are assumed to change continuously in the direction of thickness according to a simple power-law rule. The governing equation of motion for the FG nanobeam is derived by using Hamilton’s principle and then is converted into an ordinary nonlinear differential equation by the Galerkin method. The mean-square value of the response of the FG nanobeam is obtained. Comparing the obtained results with the published results for the homogeneous and non-homogeneous beams showed the accuracy of the obtained solutions. In addition, the use of the RELM gives accurate mean-square values of the response over a large range of the radius of gyration. Effects of various parameters on the mean value of the response of the FG nanobeam are investigated. It is observed that the mean-square value of the response of the FG nanobeam increases by increasing the power-law exponent, the nonlocal parameter, and the spectral density; and by reducing the material length scale parameter and the coefficients of the viscoelastic foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  2. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  4. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Koiter, W.T.: Couple stresses in the theory of elasticity, I and II. Nederl. Akad. Wetensch. Proc. Ser. B. 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  7. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  8. Şimşek, M.: Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method. Compos. Struct. 112, 264–272 (2014)

    Article  Google Scholar 

  9. Hieu, D.V.: Postbuckling and Free Nonlinear Vibration of Microbeams Based on Nonlinear Elastic Foundation. Mathematical Problems in Engineering, Volume 2018, Article ID 1031237

  10. Dang, V., Nguyen, D., Le, M., et al.: Nonlinear vibration of microbeams based on the nonlinear elastic foundation using the equivalent linearization method with a weighted averaging. Arch. Appl. Mech. 90, 87–106 (2020)

    Article  Google Scholar 

  11. Li, C., Lim, C.W., Yu, J.L., Zeng, Q.C.: Analytical solutions for vibration of simply supported nonlocal nanobeams with an axial force. Int. J. Struct. Stab. Dyn. 11, 257–271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghannadpour, S.A.M., Mohammadi, B., Fazilati, J.: Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method. Compos. Struct. 96, 584–589 (2013)

    Article  Google Scholar 

  13. Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103(2), 023511 (2008)

    Article  Google Scholar 

  14. Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A. Solids 29, 591–599 (2010)

    Article  MATH  Google Scholar 

  15. Ansari, R., Gholami, R., Sahmani, S.: Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch. Appl. Mech. 83, 1439–1449 (2013)

    Article  MATH  Google Scholar 

  16. Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40(5–6), 4109–4128 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thai, H.T., Vo, T.P., Nguyen, T.K., Kim, S.E.: A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)

    Article  Google Scholar 

  18. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, L., Hu, Y.: Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, L., Guo, X., Zhao, J.: Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dang, V., Nguyen, D., Le, M., et al.: Nonlinear vibration of nanobeams under electrostatic force based on the nonlocal strain gradient theory. Int. J. Mech. Mater. Des. 16, 289–308 (2020)

    Article  Google Scholar 

  22. Dang, V.H.: Buckling and nonlinear vibration of size-dependent nanobeam based on the non-local strain gradient theory. J. Appl. Nonlinear Dyn. 9(3), 427–446 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ebrahimi, F., Barati, M.R.: Nonlocal strain gradient theory for damping vibration analysis of viscoelastic inhomogeneous nano-scale beams embedded in visco-Pasternak foundation. J. Vib. Control 24(10), 2080–2095 (2018)

    Article  MathSciNet  Google Scholar 

  24. Sourani P, Hashemian M, Pirmoradian M, Toghraie D.: A comparison of the Bolotin and incremental harmonic balance methods in the dynamic stability analysis of an Euler–Bernoulli nanobeam based on the nonlocal strain gradient theory and surface effects. Mech. Mater. 145, 103403 (2020).

    Article  Google Scholar 

  25. Lu, L., Guo, X., Zhao, J.: A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms. Int. J. Eng. Sci. 119, 265–277 (2017)

    Article  Google Scholar 

  26. Wang, J., Zhu, Y., Zhang, B., et al.: Nonlocal and strain gradient effects on nonlinear forced vibration of axially moving nanobeams under internal resonance conditions. Appl. Math. Mech. (English Ed.) 41, 261–278 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, L., Hu, Y.: Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 107, 77–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Şimşek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tounsi, A., Basyouni, K.S.A., Mahmoud, S.R.: Size dependent bending and vibration analysis of functionally graded microbeams based on modified couple stress theory and neutral surface position. Compos. Struct. 125, 621–630 (2015)

    Article  Google Scholar 

  30. Şimşek, M., Reddy, J.N.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ebrahimi, F., Salari, E.: Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams. Mech. Adv. Mater. Struct. 23(12), 1379–1397 (2016)

    Article  Google Scholar 

  32. Ghayesh, M.H., Farokhi, H., Gholipour, A.: Oscillations of functionally graded microbeams. Int. J. Eng. Sci. 110, 35–53 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hieu, D.V., Duong, T.H., Bui, G.P.: Nonlinear Vibration of a Functionally Graded Nanobeam Based on the Nonlocal Strain Gradient Theory Considering Thickness Effect. Advances in Civil Engineering, Vol. 2020, Article ID 9407673

  34. Karamia, B., Janghorbana, M., Rabczuk, T.: Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory. Comp. Part B: Eng. 182, 107622 (2020)

    Article  Google Scholar 

  35. Ghayesh, M.H., Farajpour, A.: A review on the mechanics of functionally graded nanoscale and microscale structures. Int. J. Eng. Sci. 137, 8–36 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zahedinejad, P., Zhang, C., Zhang, H., Ju, S.: A comprehensive review on vibration analysis of functionally graded beams. Int. J. Struct. Stab. Dyn. 20(04), 2030002 (2020)

    Article  MathSciNet  Google Scholar 

  37. Elishakoff, I., Fang, J., Caimi, R.: Random vibration of a nonlinearly deformed beam by a new stochastic linearization technique. Int. J. Solids Struct. 32(11), 1571–1584 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Anh, N.D., Elishakoff, I., Hieu, N.N.: Extension of the regulated stochastic linearization to beam vibrations. Probab. Eng. Mech. 35, 2–10 (2014)

    Article  Google Scholar 

  39. Hieu, N.N., Anh, N.D., Hai, N.Q.: Vibration analysis of beams subjected to random excitation by the dual criterion of equivalent linearization. Vietnam J. Mech. 38, 49–62 (2016)

    Article  Google Scholar 

  40. Rastehkenari, S.F.: Random vibrations of functionally graded nanobeams based on unified nonlocal strain gradient theory. Microsyst. Technol. 25, 691–704 (2019)

    Article  Google Scholar 

  41. Rastehkenari, S.F., Ghadiri, M.: Nonlinear random vibrations of functionally graded porous nanobeams using equivalent linearization method. Appl. Math. Model. 89, 1847–1859 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Caughey, T.K.: Equivalent linearization techniques. J. Acoust. Soc. America 35(11), 1706–1711 (1963)

    Article  MathSciNet  Google Scholar 

  43. Anh, N.D., Di Paola, M.: Some Extensions of Gaussian Equivalent Linearization. International Conference on Nonlinear Stochastic Dynamics, Hanoi, Vietnam, pp. 5–16, December 7–10 (1995)

  44. Elishakoff, I., Andriamasy, L., Dolley, M.: Application and extension of the stochastic linearization by Anh and Di Paola. Acta Mech. 204(1–2), 89–98 (2009)

    Article  MATH  Google Scholar 

  45. Anh, N.D., Hieu, N.N., Linh, N.N.: A dual criterion of equivalent linearization method for nonlinear systems subjected to random excitation. Acta Mech. 223(3), 645–654 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Anh, N.D., Linh, N.N.: A weighted dual criterion of the equivalent linearization method for nonlinear systems subjected to random excitation. Acta Mech. 229, 1297–1310 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by Thai Nguyen University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Hieu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, N.D., Hieu, D.V. Nonlinear random vibration of functionally graded nanobeams based on the nonlocal strain gradient theory. Acta Mech 233, 1633–1648 (2022). https://doi.org/10.1007/s00707-022-03199-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03199-2

Navigation