Skip to main content
Log in

Nonlinear vibration of microbeams based on the nonlinear elastic foundation using the equivalent linearization method with a weighted averaging

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We investigate the nonlinear vibration of microbeams based on the nonlinear elastic foundation through the modified couple stress theory. The equivalent linearization method with a weighted averaging is used to solve approximately the ordinary differential equation that describes the equation of motion of the microbeam. The effects of length scale parameter, the flexural rigidity ratio, the slenderness ratio, the Winkler parameter, the Pasternak parameter and the nonlinear foundation parameter on the nonlinear vibration of the microbeam are studied and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhang, W.M., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A Phys. 214, 187–218 (2014)

    Article  Google Scholar 

  2. Younnis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reduced-order model for electrically actuated microbearm-based mems. J. Microelectromech. Syst. 12(5), 672–680 (2003)

    Article  Google Scholar 

  3. Wang, J., Musameh, M.: Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal. Chem. 75(9), 2075–2079 (2003)

    Article  Google Scholar 

  4. Balasubramanian, K., Burghard, M.: Biosensors based on carbon nanotubes. Anal. Bioanal. Chem. 385(3), 452–468 (2006)

    Article  Google Scholar 

  5. Dhahi, T.H.S., Bin Hashim, U.D.A., Ahmed, N.M., Mat Taib, A.: A review on the electrochemical sensors and biosensors composed of nanogaps as sensing material. J. Optoelectron. Adv. Mater. 12(9), 1857–1862 (2010)

    Google Scholar 

  6. Clarke, D.R., Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10(4), 853–863 (1995)

    Article  Google Scholar 

  7. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia 42(2), 475–487 (1994)

    Article  Google Scholar 

  8. Stölken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Materialia 46(14), 5109–5115 (1998)

    Article  Google Scholar 

  9. Mcfarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15(5), 1060–1067 (2005)

    Article  Google Scholar 

  10. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aifantis, E.C.: Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)

    Article  Google Scholar 

  13. Eringen, A.C.: Theory of micropolar plates. J. Appl. Math. Phys. (ZAMP) 18(1), 12–30 (1967)

    Article  Google Scholar 

  14. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurtin, M.E., Eissmüller, J.W., Larché, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78(5), 1093–1109 (1998)

    Article  Google Scholar 

  16. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  17. Thai, H.T., Vo, T.P., Nguyen, T.K., Kim, S.E.: A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)

    Article  Google Scholar 

  18. Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006)

    Article  Google Scholar 

  19. Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kong, S., Zhou, S., Nie, Z., Wang, K.: The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46(5), 427–437 (2008)

    Article  MATH  Google Scholar 

  21. Wang, L.: Size-dependent vibration characteristics of fluid-conveying microtubes. J. Fluids Struct. 26(4), 675–684 (2010)

    Article  Google Scholar 

  22. Şimşek, M.: Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory. Int. J. Eng. Sci. 48(12), 1721–1732 (2010)

    Article  MATH  Google Scholar 

  23. Ke, L.L., Wang, Y.S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93(2), 342–350 (2011)

    Article  Google Scholar 

  24. Akgöz, B., Civalek, Ö.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49(11), 1268–1280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(11), 2382–2399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Şimşek, M., Kocatürk, T., Akbaş, Ş.D.: Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory. Compos. Struct. 95, 740–747 (2013)

    Article  Google Scholar 

  27. Şimşek, M., Reddy, J.N.: A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Compos. Struct. 101, 47–58 (2013)

    Article  Google Scholar 

  28. Şimşek, M., Reddy, J.N.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Şimşek, M.: Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method. Compos. Struct. 112, 264–272 (2014)

    Article  Google Scholar 

  30. Roque, C.M.C., Fidalgo, D.S., Ferreira, A.J.M., Reddy, J.N.: A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method. Compos. Struct. 96, 532–537 (2013)

    Article  Google Scholar 

  31. Wanji, C., Chen, W., Sze, K.Y.: A model of composite laminated Reddy beam based on a modified couple-stress theory. Compos. Struct. 94(8), 2599–2609 (2012)

    Article  Google Scholar 

  32. Nateghi, A., Salamat-talab, M., Rezapour, J., Daneshian, B.: Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory. Appl. Math. Model. 36(10), 4971–4987 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jam, J.E., Noorabadi, M., Namdaran, N.: Nonlinear free vibration analysis of micro-beams resting on viscoelastic foundation based on the modified couple stress theory. Arch. Mech. Eng. 64(2), 239–256 (2017)

    Article  Google Scholar 

  34. Cveticanin, L.: Strong Nonlinear Oscillator—Analytical Solutions. Mathematical Engineering, 2nd edn. ISBN 978-3-319-58825-4, Springer, (2018)

  35. Anh, N.D.: Dual approach to averaged values of functions: a form for weighting coefficient. Vietnam J. Mech. 37(2), 145–150 (2015)

    Article  Google Scholar 

  36. Anh, N.D., Hai, N.Q., Hieu, D.V.: The equivalent linearization method with a weighted averaging for analyzing of nonlinear vibrating systems. Latin Am. J. Solids Struct. 14(9), 1723–1740 (2017)

    Article  Google Scholar 

  37. Hieu, D.V., Hai, N.Q.: Analyzing of nonlinear generalized duffing oscillators using the equivalent linearization method with a weighted averaging. Asian Res. J. Math. 9(1), 1–14 (2018)

    Article  Google Scholar 

  38. Dang, V.H., Hai, N.Q., The Hung, D.: Analytical approximate solutions for oscillators with fractional order restoring force and relativistic oscillators. Int. J. Innov. Sci. Eng. Technol. 4(2), 28–35 (2017)

    Google Scholar 

  39. Hieu, D.V., Hai, N.Q., Hung, D.T.: The equivalent linearization method with a weighted averaging for solving undamped nonlinear oscillators. J. Appl. Math. 2018, Article ID 7487851, 15 pages

  40. Minorsky, N.: Introduction to non-linear mechanics part II: analytical methods of nonlinear-mechanics. The David W. Taylor Model Basin, United States Navy, (1945)

  41. He, J.H.: Variational approach for nonlinear oscillators. Chaos Solitons Fractals 34(5), 1430–1439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Younesian, D., Askari, H., Saadatnia, Z., KalamiYazdi, M.: Frequency analysis of strongly nonlinear generalized Duffing oscillators using He’s frequency-amplitude formulation and He’s energy balance method. Comput. Math. Appl. 59(9), 3222–3228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Azrar, L., Benamar, R., White, R.G.: Semi-analytical approach to the non-linear dynamic response problem of S–S and C–C beams at large vibration amplitudes part i: general theory and application to the single mode approach to free and forced vibration analysis. J. Sound Vib. 224(2), 183–207 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 107.04-2018.12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Hieu Dang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, VH., Nguyen, DA., Le, MQ. et al. Nonlinear vibration of microbeams based on the nonlinear elastic foundation using the equivalent linearization method with a weighted averaging. Arch Appl Mech 90, 87–106 (2020). https://doi.org/10.1007/s00419-019-01599-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01599-w

Keywords

Navigation