Skip to main content
Log in

Analysis of dissipative properties of electro-viscoelastic bodies with shunting circuits on the basis of numerical modelling of natural vibrations

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The paper is concerned with the problem of optimization of dissipative properties of smart-systems which consist of elastic or viscoelastic bodies and piezoelectric bodies with electrodes connected to electric elements such as resistors, capacitors, and inductors. The systems under consideration can also contain elements made of polymeric materials filled with graphene nanoparticles (graphene composites). These elements are deformable bodies with elastic or viscoelastic properties which can also play the part of resistive elements. The parameters of smart-systems providing maximal dissipative properties are sought by means of analysis of natural vibration frequencies. The mathematical formulation of the natural vibration problem and basic relations for the finite element algorithm of the numerical simulation are presented. The possibility of using finite-element matrices assembled in the ANSYS software package for deformable elements of smart-systems is demonstrated. The procedures of finite element method allow one to reduce the natural vibration problem under consideration to a non-classic variant of the algebraic complex eigenvalue problem. An algorithm developed on the basis of Mueller’s method and the argument principle is recommended to solve this problem. We provide the examples that illustrate the determination of parameters of the electric circuits providing maximum damping and use of the graphene composite element ensuring the multimodal damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hagood, N.W., von Flotow, A.: Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146, 243–268 (1991). https://doi.org/10.1016/0022-460X(91)90762-9

    Article  Google Scholar 

  2. Swain, A., Roy, T.: Viscoelastic modeling and vibration damping characteristics of hybrid CNTs-CFRP composite shell structures. Acta. Mech. 229, 1321–1352 (2018). https://doi.org/10.1007/s00707-017-2051-9

    Article  Google Scholar 

  3. Quoc, T.H., Van Tham, V., Tu, T.M.: Active vibration control of a piezoelectric functionally graded carbon nanotube-reinforced spherical shell panel. Acta Mech. 232, 1005–1023 (2021). https://doi.org/10.1007/s00707-020-02899-x

    Article  MATH  Google Scholar 

  4. Pouresmaeeli, S., Fazelzadeh, S.A.: Frequency analysis of doubly curved functionally graded carbon nanotube-reinforced composite panels. Acta Mech. 227, 2765–2794 (2016). https://doi.org/10.1007/s00707-016-1647-9

    Article  Google Scholar 

  5. Wang, D., Chung, D.D.L.: Through-thickness piezoresistivity in a carbon fiber polymer-matrix structural composite for electrical resistance-based through-thickness strain sensing. Carbon 60, 129–138 (2013). https://doi.org/10.1016/j.carbon.2013.04.005

    Article  Google Scholar 

  6. Xi, X., Chung, D.D.L.: Piezoelectric and piezoresistive behavior of unmodified carbon fiber. Carbon 145, 452–461 (2019). https://doi.org/10.1016/j.carbon.2019.01.044

    Article  Google Scholar 

  7. Tallman, T.N., Hassan, H.: A computational exploration of the effect of alignment and aspect ratio on alternating current conductivity in carbon nanofiber–modified epoxy. J. Int. Mater. Syst. Struct. 31(5), 756–770 (2020). https://doi.org/10.1177/1045389X19898252

    Article  Google Scholar 

  8. Alemour, B., Yaacob, M.H., Lim, H.N., et al.: Review of electrical properties of graphene conductive composites. Int. J. Nanoelectron. Mater. 11(4), 371–398 (2018)

    Google Scholar 

  9. Smits, J.G., Dalke, S.I., Cooney, T.K.: The constituent equations of piezoelectric bimorphs. Sens. Actuators 28, 41–61 (1991). https://doi.org/10.1016/0924-4247(91)80007-C

    Article  Google Scholar 

  10. Chen, C.J.: Electromechanical deflections of piezoelectric tubes with quartered electrodes. Appl. Phys. Lett. 60, 132–134 (1992). https://doi.org/10.1063/1.107348

    Article  Google Scholar 

  11. Allik, H., Hughes, T.J.R.: Finite element method for piezoelectric vibration. Int. J. Numer. Methods Eng. 2(2), 151–157 (1970). https://doi.org/10.1002/nme.1620020202

    Article  Google Scholar 

  12. Hansy-Staudigl, E., Krommer, M., Humer, A.: A complete direct approach to nonlinear modeling of dielectric elastomer plates. Acta Mech. 230, 3923–3943 (2019). https://doi.org/10.1007/s00707-019-02529-1

    Article  MATH  Google Scholar 

  13. Krommer, M., Irschik, H.: An electromechanically coupled theory for piezoelastic beams taking into account the charge equation of electrostatics. Acta Mech. 154, 141–158 (2002). https://doi.org/10.1007/BF01170704

    Article  MATH  Google Scholar 

  14. Benjeddou, A.: Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput. Struct. 76, 347–363 (2000). https://doi.org/10.1016/S0045-7949(99)00151-0

    Article  Google Scholar 

  15. Zouari, W., Ayad, R., Ben Zineb, T., Benjeddou, A.: A piezoelectric 3D hexahedral curvilinear finite element based on the space fiber rotation concept. Int. J. Numer. Methods Eng. 90, 87–115 (2012). https://doi.org/10.1002/nme.3315

    Article  MATH  Google Scholar 

  16. Kögl, M., Bucalem, M.L.: A family of piezoelectric MITC plate elements. Comput. Struct. 83, 1277–1297 (2005). https://doi.org/10.1016/j.compstruc.2004.04.025

    Article  Google Scholar 

  17. Bernadou, M., Haenel, C.: Modelization and numerical approximation of piezoelectric thin shells. Part II: approximation by finite element methods and numerical experiments. Comp. Methods Appl. Mech. Eng. 192, 4045–4073 (2003). https://doi.org/10.1016/S0045-7825(03)00362-1

    Article  MATH  Google Scholar 

  18. Zouari, W., Ben Zineb, T., Benjeddou, A.: A FSDT-MITC piezoelectric shell finite element with ferroelectric non-linearity. J. Int. Mater. Syst. Struct. 20, 2055–2075 (2009). https://doi.org/10.1177/1045389X09345560

    Article  Google Scholar 

  19. Garcia Lage, R., Mota Soares, C.M., Mota Soares, C.A., Reddy, J.N.: Modelling of piezolaminated plates using layerwise mixed finite elements. Comput. Struct. 82, 1849–1863 (2004). https://doi.org/10.1016/j.compstruc.2004.03.068

    Article  Google Scholar 

  20. Thomas, O., Deü, J.F., Ducarne, J.: Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite elements formulation and electromechanical couplings coefficients. Int. J. Numer. Methods Eng. 80(2), 235–268 (2009). https://doi.org/10.1002/nme.2632

    Article  MATH  Google Scholar 

  21. Sze, K.Y., Yao, L.Q., Yi, S.: A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part II—Smart structure modelling. Int. J. Numer. Methods Eng. 48, 565–582 (2000)

    Article  MATH  Google Scholar 

  22. Klinkel, S., Wagner, W.: A piezoelectric solid shell element based on a mixed variational formulation for geometrically linear and nonlinear applications. Comput. Struct. 86, 38–46 (2008). https://doi.org/10.1016/j.compstruc.2007.05.032

    Article  Google Scholar 

  23. Kulikov, G.M., Plotnikova, S.V.: Exact geometry piezoelectric solid-shell element based on the 7-parameter model. Mech. Adv. Mater. Struct. 18, 133–146 (2011). https://doi.org/10.1080/15376494.2010.496067

    Article  Google Scholar 

  24. Kulikov, G.M., Plotnikova, S.V.: A new approach to three-dimensional exact solutions for functionally graded piezoelectric laminated plates. Compos. Struct. 106, 33–46 (2013). https://doi.org/10.1016/j.compstruct.2013.05.037

    Article  Google Scholar 

  25. Ha, S.K., Keilers, C., Chang, F.K.: Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators. AIAA J. 30, 772–780 (1992). https://doi.org/10.2514/3.10984

    Article  MATH  Google Scholar 

  26. Kim, J., Varadan, V.V., Varadan, V.K.: Finite element modeling of structures including piezoelectric active devices. Int. J. Numer. Methods Eng. 40, 817–832 (1997)

    Article  MATH  Google Scholar 

  27. McCalla, J.: Fundamentals of Computer-Aided Circuit Simulation. Kluwer, Amsterdam (1988)

    Google Scholar 

  28. Venter, G.S., Silva, L.M.P., Carneiro, M.B., et al.: Passive and active strategies using embedded piezoelectric layers to improve the stability limit in turning/boring operations. Int J. Adv. Manuf. Technol. 89(2–5), 2789–2801 (2017). https://doi.org/10.1007/s00170-016-9620-2

    Article  Google Scholar 

  29. Schoeftner, J., Krommer, M.: Single point vibration control for a passive piezoelectric Bernoulli-Euler beam subjected to spatially varying harmonic loads. Acta Mech. 223(9), 1983–1998 (2012). https://doi.org/10.1007/s00707-012-0686-0

    Article  MATH  Google Scholar 

  30. Benjeddou, A.: Modal effective electromechanical coupling approximate evaluations and simplified analyses: numerical and experimental assessments. Acta Mech. 225(10), 2721–2742 (2014). https://doi.org/10.1007/s00707-014-1206-1

    Article  MATH  Google Scholar 

  31. da Silva, L.P., Deü, J.-F., Larbi, W., Trindade, M.A.: An efficient finite element approach for reduction of structural vibration and acoustic radiation by passive shunted piezoelectric systems. In: Proc.10th World Congress on Computational Mechanics, São Paulo, Brazil, vol. 1, pp. 1–20 (2014). https://doi.org/10.5151/meceng-wccm2012-18811

  32. Matveenko, V., Sevodin, M., Sevodina, N.: Applications of Muller’s method and the argument principle to eigenvalue problems in solid mechanics. Comput. Cont. Mech. 7(3), 331–336 (2014). https://doi.org/10.7242/1999-6691/2014.7.3.32

    Article  Google Scholar 

  33. Ilyushin, A.A., Pobedrya, B.E.: Osnovy matematicheskoi teorii termovyazkouprugosti [Foundations of mathematical theory of thermal viscoelasticity]. Nauka, Moscow (1970)

    Google Scholar 

  34. Washizu, K.: Variational Methods in Elasticity and Plasticity. Elsevier, Amsterdam (1982)

    MATH  Google Scholar 

  35. Parton, V.Z., Kudryavtsev, B.A.: Electromagnetoelasticity: Piezoelectrics and Electrically Conductive Solids. Gordon and Breach Science Publishers Ltd., UK (1988)

    Google Scholar 

  36. Karnaukhov, V.G., Kirichok, I.F.: Electrothermal Viscoelasticity. Nauk. Dumka, Kiev (1988)

    Google Scholar 

  37. Charles, K.A., Sadiku, M.N.O.: Fundamentals of electric circuits, 4th edn. McGraw-Hill, New York (2009)

    Google Scholar 

Download references

Acknowledgements

The work was carried out as part of the implementation of the Program for the creation and development of a world-class scientific center «Supersonic» for 2020-2025 with the financial support of the Ministry of Education and Science of Russia (order of the Government of the Russian Federation dated October 24, 2020, No. 2744-r).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerii Matveenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveenko, V., Iurlova, N., Oshmarin, D. et al. Analysis of dissipative properties of electro-viscoelastic bodies with shunting circuits on the basis of numerical modelling of natural vibrations. Acta Mech 234, 261–276 (2023). https://doi.org/10.1007/s00707-022-03193-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03193-8

Navigation