Skip to main content
Log in

Nonlinear bending of FG skew sandwich plates with temperature-dependent elastoplastic properties using an enhanced 3D meshless approach

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents the three-dimensional (3D) nonlinear response of temperature-dependent thermo-elastoplastic bending of functionally graded (FG) skew sandwich plates with FG face sheets and FG core under a combination of mechanical and thermal loads. For this purpose, an enhanced and efficient truly meshless method based on the local radial point interpolation method (LRPIM) and a new radial basis function (RBF) has been developed in which the quality of the LRPIM shape functions is not affected by the shape parameter. The modified rule of mixtures is utilized to evaluate the effective temperature-dependent material parameters locally. To describe the plastic behavior of the plate, the Prandtl–Reuss flow rule and the von Mises yield criterion are adapted considering isotropic strain hardening. To prove the high accuracy and efficiency of the present method, the obtained results are compared and confirmed with other available numerical and analytical results. During the analysis of various examples, the effect of significant parameters such as material gradient, skew angle, plate thickness-to-length ratio, layer thickness ratio, and boundary conditions on the results is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kashtalyan, M., Menshykova, M.: Three-dimensional elasticity solution for sandwich panels with a functionally graded core. Compos. Struct. 87(1), 36–43 (2009)

    Article  Google Scholar 

  2. Katariya, P.V., Panda, S.K., Mahapatra, T.R.: Bending and vibration analysis of skew sandwich plate. Aircr. Eng. Aerosp. Technol. 90(6), 885–895 (2018)

    Article  Google Scholar 

  3. Hajheidari, H., Mirdamadi, H.R.: Free and transient vibration analysis of an un-symmetric cross-ply laminated plate by spectral finite elements. Acta. Mech. 223(11), 2477–2492 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wu, K.C.: Stress intensity factors and energy release rate for anisotropic plates based on the classical plate theory. Compos. Part B Eng. 97, 3000–3008 (2016)

    Article  Google Scholar 

  5. Zenkour, A.M., Allam, M.N., Shaker, M.O., Radwan, A.F.: On the simple and mixed first-order theories for plates resting on elastic foundations. Acta Mech. 220(1), 33–46 (2011)

    Article  MATH  Google Scholar 

  6. Li, H., Pang, F., Ren, Y., Miao, X., Ye, K.: Free vibration characteristics of functionally graded porous spherical shell with general boundary conditions by using first-order shear deformation theory. Thin-Walled Struct. 144, 106331 (2019)

    Article  Google Scholar 

  7. Szekrényes, A.: Application of differential quadrature method to delaminated first-order shear deformable composite plates. Thin-Walled Struct. 166, 108028 (2021)

    Article  Google Scholar 

  8. Thai, C.H., Ferreira, A.J., Wahab, M.A., Nguyen-Xuan, H.: A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis. Acta Mech. 227(5), 1225–1250 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M.: Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations. Steel Compos. Struct. 39(5), 631–643 (2021)

    Google Scholar 

  10. Dastjerdi, S., Abbasi, M., Yazdanparast, L.: A new modified higher-order shear deformation theory for nonlinear analysis of macro-and nano-annular sector plates using the extended Kantorovich method in conjunction with SAPM. Acta Mech. 228(10), 3381–3401 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haghani, A., Mondali, M., Faghidian, S.A.: Linear and nonlinear flexural analysis of higher-order shear deformation laminated plates with circular delamination. Acta Mech. 229(4), 1631–1648 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M., Al-Dulaijan, S.U.: Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation. Structures 33, 2177–2189 (2021)

    Article  Google Scholar 

  13. Van Do, V.N., Lee, C.H.: Nonlinear thermal buckling analyses of functionally graded circular plates using higher-order shear deformation theory with a new transverse shear function and an enhanced mesh-free method. Acta Mech. 229(9), 3787–3811 (2018)

    Article  MathSciNet  Google Scholar 

  14. Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., Adda Bedia, E.A., Tounsi, A.: Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model. Steel Compos. Struct. 41(4), 487–503 (2021)

    Google Scholar 

  15. Chau-Dinh, T., Nguyen, T.K., Nguyen-Van, H., Ton-That, H.L.: A MITC3+ element improved by edge-based smoothed strains for analyses of laminated composite plates using the higher-order shear deformation theory. Acta Mech. 232(2), 389–422 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nguyen, T.H., Niiranen, J.: Nonlocal continuum damage modeling for functionally graded plates of third-order shear deformation theory. Thin-Walled Struct. 164, 107876 (2021)

    Article  Google Scholar 

  17. Ji, M., Wu, Y.C., Ma, C.C.: Theoretical analyses and numerical simulation of flexural vibration based on Reddy and modified higher-order plate theories for a transversely isotropic circular plate. Acta Mech. 3, 1–8 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Thai, C.H., Ferreira, A.J.M., Bordas, S.P.A., Rabczuk, T., Nguyen-Xuan, H.: Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. Eur. J. Mech. A/Solids 43, 89–108 (2014)

    Article  MATH  Google Scholar 

  19. Xiang, S., Wang, K.M.: Free vibration analysis of symmetric laminated composite plates by trigonometric shear deformation theory and inverse multiquadric RBF. Thin-Walled Struct. 47(3), 304–310 (2009)

    Article  Google Scholar 

  20. Mantari, J.L., Bonilla, E.M., Soares, C.G.: A new tangential-exponential higher order shear deformation theory for advanced composite plates. Compos. Part B Eng. 60, 319–328 (2014)

    Article  Google Scholar 

  21. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U., Al-Zahrani, M.M.: Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment. Compos. Struct. 269, 114030 (2021)

    Article  Google Scholar 

  22. Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Tounsi, A., Hussain, M.: An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core. Steel Compos. Struct. 41(2), 167–691 (2021)

    Google Scholar 

  23. Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U., Al-Zahrani, M.M.: Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal plate in a hygrothermal environment. Thin-Walled Struct. 170, 108549 (2022)

    Article  Google Scholar 

  24. Amiri, F., Anitescu, C., Arroyo, M., Bordas, S.P., Rabczuk, T.: XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Comput. Mech. 53(1), 45–57 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rabczuk, T., Areias, P.M., Belytschko, T.: A meshfree thin shell method for non-linear dynamic fracture. Int. J. Numer. Methods Eng. 72(5), 524–548 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rabczuk, T., Gracie, R., Song, J.H., Belytschko, T.: Immersed particle method for fluid–structure interaction. Int. J. Numer. Methods Eng. 81(1), 48–71 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Areias, P., Rabczuk, T.: Finite strain fracture of plates and shells with configurational forces and edge rotations. Int. J. Numer. Methods Eng. 94(12), 1099–1122 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Areias, P., Rabczuk, T., Msekh, M.: Phase-field analysis of finite-strain plates and shells including element subdivision. Comput. Methods Appl. Mech. Eng. 312, 322–350 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, Y., Zhou, D.: Three-dimensional elasticity solution of functionally graded rectangular plates with variable thickness. Compos. Struct. 91(1), 56–65 (2009)

    Article  Google Scholar 

  30. Vaghefi, R., Baradaran, G.H., Koohkan, H.: Three-dimensional static analysis of thick functionally graded plates by using meshless local Petrov-Galerkin (MLPG) method. Eng. Anal. Bound. Elem. 34(6), 564–573 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Alibeigloo, A., Alizadeh, M.: Static and free vibration analyses of functionally graded sandwich plates using state space differential quadrature method. Eur. J. Mech. A-Solid. 54, 252–266 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Demasi, L.: 2D, quasi 3D and 3D exact solutions for bending of thick and thin sandwich plates. J. Sandwich Struct. Mater. 10(4), 271–310 (2008)

    Article  Google Scholar 

  33. Pagano, N.J.: Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 4(1), 20–34 (1970)

    Article  Google Scholar 

  34. Pantano, A., Averill, R.C.: A 3D zig-zag sublaminate model for analysis of thermal stresses in laminated composite and sandwich plates. J. Sandwich Struct. Mater. 2(3), 288–312 (2000)

    Article  Google Scholar 

  35. Woodward, B., Kashtalyan, M.: Bending response of sandwich panels with graded core: 3D elasticity analysis. Mech. Adv. Mater. Struct. 17(8), 586–594 (2010)

    Article  Google Scholar 

  36. Woodward, B., Kashtalyan, M.: 3D elasticity analysis of sandwich panels with graded core under distributed and concentrated loadings. Int. J. Mech. Sci. 53(10), 872–885 (2011)

    Article  Google Scholar 

  37. Zenkour, A.M.: Three-dimensional elasticity solution for uniformly loaded cross-ply laminates and sandwich plates. J. Sandwich Struct. Mater. 9(3), 213–238 (2007)

    Article  MathSciNet  Google Scholar 

  38. Wu, C.P., Li, H.Y.: An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions. CMC-Comput. Mater. Continua 34, 27–62 (2013)

    Google Scholar 

  39. Moleiro, F., Soares, C.M., Carrera, E.: Three-dimensional exact hygro-thermo-elastic solutions for multilayered plates: composite laminates, fibre metal laminates and sandwich plates. Compos. Struct. 216, 260–278 (2019)

    Article  Google Scholar 

  40. Alibeigloo, A.: Three dimensional coupled thermoelasticity solution of sandwich plate with FGM core under thermal shock. Compos. Struct. 177, 96–103 (2017)

    Article  Google Scholar 

  41. Nikbakht, S., Salami, S.J., Shakeri, M.: A 3D full layer-wise method for yield achievement in Functionally Graded Sandwich Plates with general boundary conditions. Eur. J. Mech. A-Solids 75, 330–347 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vaghefi, R.: Thermo-elastoplastic analysis of functionally graded sandwich plates using a three-dimensional meshless model. Compos. Struct. 242, 112144 (2020)

    Article  Google Scholar 

  43. Asemi, K., Salami, S.J., Salehi, M., Sadighi, M.: Dynamic and static analysis of FGM skew plates with 3D elasticity based graded finite element modeling. Lat. Am. J. Solids Struct. 11(3), 504–533 (2014)

    Article  Google Scholar 

  44. Adineh, M., Kadkhodayan, M.: Three-dimensional thermo-elastic analysis and dynamic response of a multi-directional functionally graded skew plate on elastic foundation. Compos. Part B Eng. 125, 227–240 (2017)

    Article  Google Scholar 

  45. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Meth. Eng. 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10, 307–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Babuska, I., Melenk, J.: The partition of unity method. Int. J. Numer. Meth. Eng. 40, 727–758 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  49. Sukumar, N., Moran, B., Belytschko, T.: The natural element method in solid mechanics. Int. J. Numer. Meth. Eng. 43, 839–887 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, W.K., Jun, S., Zhang, Y.: Reproducing kernel particle methods. Int. J. Numer. Meth. Fl. 20, 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  51. Gu, L.: Moving kriging interpolation and element-free Galerkin method. Int. J. Numer. Methods Eng. 56(1), 1–11 (2003)

    Article  MATH  Google Scholar 

  52. Onate, E., Perazzo, F., Miquel, J.: A finite point method for elasticity problems. Comput. Struct. 79, 2151–2163 (2001)

    Article  Google Scholar 

  53. Wang, J.G., Liu, G.R.: Radial point interpolation method for elastoplastic problems. In: Proceedings of the 1st international conference on structural stability and dynamics. Taibei, Taiwan, 7–9 Dec 2000, pp. 703–708 (2000)

  54. Liu, G.R., Gu, Y.T.: A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids. J. Sound Vib. 246(1), 29–46 (2001)

    Article  Google Scholar 

  55. Liu, G.R., Yan, L., Wang, J.G., Gu, Y.T.: Point interpolation method based on local residual formulation using radial basis functions. Struct. Eng. Mech. 14(6), 713–732 (2002)

    Article  Google Scholar 

  56. Gu, Y., Wang, W., Zhang, L.C., Feng, X.Q.: An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields. Eng. Fract. Mech. 78(1), 175–190 (2011)

    Article  Google Scholar 

  57. Liu, G.R., Zhang, G.Y., Gu, Y., Wang, Y.Y.: A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput. Mech. 36(6), 421–430 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. Xia, P., Long, S., Cui, H.: Elastic dynamic analysis of moderately thick plate using meshless LRPIM. Acta Mech. Solida Sin. 22(2), 116–124 (2009)

    Article  Google Scholar 

  59. Xia, P., Long, S.Y., Cui, H.X., Li, G.Y.: The static and free vibration analysis of a nonhomogeneous moderately thick plate using the meshless local radial point interpolation method. Eng. Anal. Bound. Elem. 33(6), 770–777 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wu, Y.L.: A meshless local radial point interpolation method (LRPIM) for fluid flow problems. Adv. Meshfree X-Fem Methods 2, 129–134 (2003). https://doi.org/10.1142/9789812778611_0021

    Article  Google Scholar 

  61. Dehghan, M., Ghesmati, A.: Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput. Phys. Commun. 181(4), 772–786 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  62. Shivanian, E., Khodabandehlo, H.R.: Application of meshless local radial point interpolation (MLRPI) on a one-dimensional inverse heat conduction problem. Ain. Shams Eng. J. 7(3), 993–1000 (2016)

    Article  Google Scholar 

  63. Dehghan, M., Haghjoo-Saniji, M.: The local radial point interpolation meshless method for solving Maxwell equations. Eng. Comput. 33(4), 897–918 (2017)

    Article  Google Scholar 

  64. Lewis, R.W., Nithiarasu, P., Seetharamu, K.N.: Fundamentals of the Finite Element Method for Heat and Fluid Flow. John Wiley & Sons, UK (2004)

    Book  Google Scholar 

  65. Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, New York (1950)

    MATH  Google Scholar 

  66. Sluzalec, A.: Introduction to Nonlinear Thermomechanics. Theory and Finite Element Solutions. Springer-Verlag, London (1992)

    Book  MATH  Google Scholar 

  67. Vaghefi, R., Hematiyan, M.R., Nayebi, A.: Three-dimensional thermo-elastoplastic analysis of thick functionally graded plates using the meshless local Petrov-Galerkin method. Eng. Anal. Bound. Elem. 71, 34–49 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  68. Hsu, T.R.: The Finite Element Methods in Thermomechanics. Allen & Unwin Inc, Winchester Mass (1986)

    Book  Google Scholar 

  69. Powell, M.J.D.: The uniform convergence of thin plate splines in two dimensions. Numer. Math. 68(1), 107–128 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  70. Agnantiaris, J.P., Polyzos, D., Beskos, D.E.: Some studies on dual reciprocity BEM for elastodynamic analysis. Comput. Mech. 17, 270–277 (1996)

    Article  MATH  Google Scholar 

  71. Hardy, R.L.: Theory and applications of the multiquadrics–biharmonic method. Comput. Math. Appl. 19, 163–208 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  72. Wang, J.G., Liu, G.R.: On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput. Methods Appl. Mech. Eng. 191, 2611–2630 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  73. Van Do, V.N., Lee, C.H.: Nonlinear analyses of FGM plates in bending by using a modified radial point interpolation mesh-free method. Appl. Math. Model. 57, 1–20 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  74. Liu, G.R.: Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press, USA (2003)

    MATH  Google Scholar 

  75. Reddy, J.N.: An Introduction to the Finite Element Method. McGraw-Hill, Singapore (1993)

    Google Scholar 

  76. Moreira, S.F., Belinha, J., Dinis, L.M., Jorge, R.M.: The anisotropic elasto-plastic analysis using a natural neighbour RPIM version. J Braz. Soc. Mech. Sci. Eng. 39(5), 1773–1795 (2017)

    Article  Google Scholar 

  77. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  Google Scholar 

  78. Love, B.M., Batra, R.C.: Determination of effective thermomechanical parameters of a mixture of two elastothermoviscoplastic constituents. Int. J. Plast. 22, 1026–1061 (2006)

    Article  MATH  Google Scholar 

  79. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  80. Suresh, S., Mortensen, A.: Fundamentals of Functionally Graded Materials. IOM Communications Ltd, London (1998)

    Google Scholar 

  81. Williamson, R.L., Rabin, B.H., Drake, J.T.: Finite element analysis of thermal residual stresses at graded ceramic/metal interfaces, part I: model description and geometrical effects. J. Appl. Phys. 74, 1310–1320 (1993)

    Article  Google Scholar 

  82. Hatta, H., Taya, M.: Effective thermal conductivity of a misoriented short fiber composite. J. Appl. Phys. 58, 2478–2486 (1985)

    Article  Google Scholar 

  83. Rosen, B.W., Hashin, Z.: Effective thermal expansion coefficients and specific heats of composite materials. Int. J. Eng. Sci. 8, 157–173 (1970)

    Article  Google Scholar 

  84. Nemat-Alla, M., Ahmed, K.I.E., Hassab-Allah, I.: Elastic–plastic analysis of twodimensional functionally graded materials under thermal loading. Int. J. Solids Struct. 46, 2774–2786 (2009)

    Article  MATH  Google Scholar 

  85. Reddy, J.N., Cheng, Z.Q.: Three-dimensional thermomechanical deformations of functionally graded rectangular plates. Eur. J. Mech. A/Solids 20(5), 841–855 (2001)

    Article  MATH  Google Scholar 

  86. Peng, M., Li, D., Cheng, Y.: The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems. Eng. Struct. 33(1), 127–135 (2011)

    Article  Google Scholar 

  87. Neves, A.M.A., Ferreira, A.J., Carrera, E., Cinefra, M., Jorge, R.M.N., Soares, C.M.M.: Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects. Adv. Eng. Softw. 52, 30–43 (2012)

    Article  Google Scholar 

  88. Bessaim, A., Houari, M.S., Tounsi, A., Mahmoud, S.R., Bedia, E.A.A.: A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets. J. Sandwich Struct. Mater. 15(6), 671–703 (2013)

    Article  Google Scholar 

  89. Zhang, Y.M., Xiao, Z.M., Zhang, W.G.: On 3-D crack problems in offshore pipeline with large plastic deformation. Theor. Appl. Fract. Mech. 67, 22–28 (2013)

    Article  Google Scholar 

  90. Yi, D.K., Xiao, Z.M., Tan, S.K.: On the plastic zone size and the crack tip opening displacement of an interface crack between two dissimilar materials. Int. J. Fract. 176(1), 97–104 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Vaghefi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

The following variable changes convert Cartesian coordinates \((x,y,z)\) to skew coordinates \((\zeta ,\eta ,z)\):

$$\begin{gathered} x = \zeta + \eta \sin \theta ,\hfill \\ y = \eta cos\theta , \hfill \\ u_{\zeta } = ucos\theta - v\sin \theta , \hfill \\ v_{\eta } = u\sin \theta + vcos\theta , \hfill \\ \frac{\partial }{\partial x} = \frac{\partial }{\partial \zeta }, \hfill \\ \frac{\partial }{\partial y} = - tan\theta \frac{\partial }{\partial \zeta } + \frac{1}{cos\theta }\frac{\partial }{\partial \eta }. \hfill \\ \end{gathered}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaghefi, R. Nonlinear bending of FG skew sandwich plates with temperature-dependent elastoplastic properties using an enhanced 3D meshless approach. Acta Mech 233, 1599–1631 (2022). https://doi.org/10.1007/s00707-022-03175-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03175-w

Navigation