Skip to main content
Log in

Nonlinear planar vibrations of a cable with a linear damper

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper minutely studies the effects of the damper on nonlinear behaviors of a cable–damper system. By modeling the damper as a combination of a viscous damper and a linear spring, the primary resonance and subharmonic resonance (1/2 order and 1/3 order) of the cable are explored. The equation of motion of the cable is treated by using Galerkin’s method, and the ordinary differential equation (ODE) is obtained subsequently. To solve the ODE, the method of multiple timescales is applied, and the modulation equations corresponding to different types of resonance are derived. Then, the frequency–/force–response curves are acquired by utilizing Newton–Raphson method and pseudo-arclength algorithm, so as to explore the vibration suppression effect from a nonlinear point of view. Meanwhile, the time histories, phase portraits and Poincaré sections are also provided to discuss the influences of the damping and spring stiffness on the nonlinear characteristics of the cable. The results show that the damper has a significant effect on nonlinear resonances of the cable, and the increase in damping (spring stiffness) makes the dual characteristic gradually convert to the softening (hardening) characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Cong, Y.Y., Kang, H.J., Yan, G.R., Guo, T.D.: Modeling, dynamics, and parametric studies of a multi-cable-stayed beam model. Acta Mech. 231(4), 1–24 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Xu, L., Hui, Y., Yang, Q.S., Chen, Z.Q., Law, S.S.: Modeling and modal analysis of suspension bridge based on continual formula method. Mech. Syst. Sig. Process. 162, 107855 (2022)

    Article  Google Scholar 

  3. Wang, Z.Q., Kang, H.J., Sun, C.S., Zhao, Y.B., Yi, Z.P.: Modeling and parameter analysis of in-plane dynamics of a suspension bridge with transfer matrix method. Acta Mech. 225(12), 3423–3435 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Su, X.Y., Kang, H.J., Chen, J.F., Guo, T.D., Sun, C.S., Zhao, Y.Y.: Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge. Nonlinear Dyn. 98(2), 1247–1266 (2019)

    Article  Google Scholar 

  5. Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. Proc. R. Soc. London. A. 341(1626), 299–315 (1974)

    Article  Google Scholar 

  6. Rega, G., Luongo, A.: Natural vibrations of suspended cables with flexible supports. Comput. Struct. 12(1), 65–75 (1980)

    Article  MATH  Google Scholar 

  7. Luongo, A., Zulli, D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67(1), 71–87 (2012)

    Article  MathSciNet  Google Scholar 

  8. Benedettini, F., Rega, G.: Planar non-linear oscillations of elastic cables under superharmonic resonance conditions. J. Sound Vib. 132(3), 353–366 (1989)

    Article  MATH  Google Scholar 

  9. Zhao, Y.Y., Wang, L.H.: On the symmetric modal interaction of the suspended cable: three-to-one internal resonance. J. Sound Vib. 294(4–5), 1073–1093 (2006)

    Article  Google Scholar 

  10. Rega, G.: Nonlinear vibrations of suspended cables–part I: modeling and analysis. Appl. Mech. Rev. 57(6), 443–478 (2004)

    Article  Google Scholar 

  11. Krenk, S.: Vibrations of a taut cable with an external damper. J. Appl. Mech. 67(4), 772–776 (2000)

    Article  MATH  Google Scholar 

  12. Tabatabai, H., Mehrabi, A.B.: Design of mechanical viscous dampers for stay cables. J. Bridge Eng. 5(2), 114–123 (2000)

    Article  Google Scholar 

  13. Main, J.A., Jones, N.P.: Evaluation of viscous dampers for stay-cable vibration mitigation. J. Bridge Eng. 6(6), 385–397 (2001)

    Article  Google Scholar 

  14. Main, J.A., Jones, N.P.: Free vibrations of taut cable with attached damper. I: linear viscous damper. J. Eng. Mech. 128(10), 1062–1071 (2002)

    Google Scholar 

  15. Main, J.A., Jones, N.P.: Free vibrations of taut cable with attached damper. II: nonlinear damper. J. Eng. Mech. 128(10), 1072–1081 (2002)

    Google Scholar 

  16. Krenk, S., Nielsen, S.R.K.: Vibrations of a shallow cable with a viscous damper. Proc. R. Soc. Lond. A. 458(2018), 339–357 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caracoglia, L., Jones, N.P.: Damping of taut-cable systems: two dampers on a single stay. J. Eng. Mech. 133(10), 1050–1060 (2007)

    Google Scholar 

  18. Chen, L., Sun, L.M., Nagarajaiah, S.: Cable vibration control with both lateral and rotational dampers attached at an intermediate location. J. Sound Vib. 377(1), 38–57 (2016)

    Article  Google Scholar 

  19. Zhou, H.J., Sun, L.M., Xing, F.: Free vibration of taut cable with a damper and a spring. Struct. Control Health Monit. 21(6), 996–1014 (2014)

    Article  Google Scholar 

  20. Huang, Z., Jones, N.P.: Damping of taut-cable systems: effects of linear elastic spring support. J. Eng. Mech. 137(7), 512–518 (2011)

    Google Scholar 

  21. Li, H., Liu, M., Ou, J.P.: Negative stiffness characteristics of active and semi-active control systems for stay cables. Struct. Control Health Monit. 15(2), 120–142 (2008)

    Article  Google Scholar 

  22. Shi, X., Zhu, S.Y., Nagarajaiah, S.: Performance comparison between passive negative-stiffness dampers and active control in cable vibration mitigation. J. Bridge Eng. 22(9), 04017054 (2017)

    Article  Google Scholar 

  23. Johnson, E.A., Baker, G.A., Spencer, B.F., Fujino, Y.: Semiactive damping of stay cables. J. Eng. Mech. 133(1), 1–11 (2007)

    Google Scholar 

  24. Boston, C., Weber, F., Guzzella, L.: Optimal semi-active damping of cables with bending stiffness. Smart Mater. Struct. 20(5), 055005 (2011)

    Article  Google Scholar 

  25. Chen, L., Sun, L.M.: Calibration of nonlinear damper for shallow cable based on forced vibration analysis. In: East Asia-Pacific conference on structural engineering & construction. pp. 1852–1859 (2017)

  26. Yu, Z., Xu, Y.L.: Non-linear vibration of cable–damper systems. Part I: formulation. J. Sound Vib. 225(3), 447–463 (1999)

    Article  Google Scholar 

  27. Xu, Y.L., Yu, Z.: Non-linear vibration of cable–damper systems. Part II: application and verification. J. Sound Vib. 225(3), 465–481 (1999)

    Article  Google Scholar 

  28. Casciati, F., Ubertini, F.: Nonlinear vibration of shallow cables with semiactive tuned mass damper. Nonlinear Dyn. 53(1–2), 89–106 (2007)

    MATH  Google Scholar 

  29. Rega, G., Benedettini, F.: Planar non-linear oscillations of elastic cables under subharmonic resonance conditions. J. Sound Vib. 132(3), 367–381 (1989)

    Article  MATH  Google Scholar 

  30. Gattulli, V., Morandini, M., Paolone, A.: A parametric analytical model for non-linear dynamics in cable-stayed beam. Earthq. Eng. Struct. Dyn. 31(6), 1281–1300 (2002)

    Article  Google Scholar 

  31. Wang, Z.H., Gao, H., Fan, B.Q., Chen, Z.Q.: Inertial mass damper for vibration control of cable with sag. J. Low Freq. Noise Vib. Active Control 39(3), 749–760 (2020)

    Article  Google Scholar 

  32. Pacheco, B.M., Fujino, Y., Sulekh, A.: Estimation curve for modal damping in stay cables with viscous damper. J. Struct. Eng. 119(6), 1961–1979 (1993)

    Article  Google Scholar 

  33. Zhou, P., Li, H.: Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations. Struct. Control Health Monit. 23(4), 764–782 (2016)

    Article  MathSciNet  Google Scholar 

  34. Liu, T.T., Huang, H.W., Sun, L.M.: Optimal control of cable vibration using MR damper based on nonlinear modeling. In: The 2015 world congress on advance in civil, environmental, and materials research, Incheon (2015)

  35. Lacarbonara, W., Rega, G., Nayfeh, A.H.: Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems. Int. J. Nonlinear Mech. 38(6), 851–872 (2003)

    Article  MATH  Google Scholar 

  36. Seydel, R.: Practical bifurcation and stability analysis. Springer, New York (2009)

    MATH  Google Scholar 

  37. Nayfeh, A.H., Balachandran, B.: Applied nonlinear dynamics. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  38. Luongo, A., Paolone, A.: On the reconstitution problem in the multiple time scale method. Nonlinear Dyn. 19(2), 133–156 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhao, Y.B., Lin, H.H., Chen, L.C., Wang, C.F.: Simultaneous resonances of suspended cables subjected to primary and super-harmonic excitations in thermal environments. Int. J. Struct. Stab. Dyn. 19(12), 1950155 (2019)

    Article  MathSciNet  Google Scholar 

  40. Zulli, D., Luongo, A.: Nonlinear energy sink to control vibrations of an internally nonresonant elastic string. Meccanica 50(3), 781–794 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81(1), 425–435 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Su, X.Y., Kang, H.J., Guo, T.D.: Modelling and energy transfer in the coupled nonlinear response of a 1: 1 internally resonant cable system with a tuned mass damper. Mech. Syst. Sig. Process. 162, 108058 (2022)

    Article  Google Scholar 

  43. Benedettini, F., Rega, G.: Non-linear dynamics of an elastic cable under planar excitation. Int. J. Nonlinear Mech. 22(6), 497–509 (1987)

    Article  MATH  Google Scholar 

  44. Zhao, Y.B., Guo, Z.X., Huang, C.H., Chen, L.C., Li, S.C.: Analytical solutions for planar simultaneous resonances of suspended cables involving two external periodic excitations. Acta Mech. 229(11), 4393–4411 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the National Natural Science Foundation of China (11972151 and 11872176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houjun Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The expressions of the Galerkin integral coefficients in Eq. (10) are given as follows:

\(b_{11} = \omega_{c}^{2} = \frac{1}{{\int_{0}^{1} {\phi_{c}^{2} (x)} {\text{d}}x}}\left[K_{d} \phi_{c}^{2} (l_{1} ) - \frac{{\lambda_{c} \int_{0}^{1} {y^{\prime}_{c} (x)\phi^{\prime}_{c} (x)dx} \int_{0}^{1} {y^{\prime\prime}_{c} (x)\phi_{c} (x)dx} }}{{\beta_{c}^{2} }} - \int_{0}^{1} {\frac{{\phi_{c} (x)\phi^{\prime\prime}_{c} (x)}}{{\beta_{c}^{2} }}} {\text{d}}x\right]\);

\(b_{12} = \frac{1}{{\int_{0}^{1} {\phi_{c}^{2} (x)} {\text{d}}x}}\left[\mu_{c} \int_{0}^{1} {\phi_{c}^{2} (x)} {\text{d}}x + C_{d} \phi_{c}^{2} (l_{1} )\right]\);

\(b_{13} = \frac{1}{{\int_{0}^{1} {\phi_{c}^{2} (x)} {\text{d}}x}}\left[ - \frac{{\lambda_{c} \int_{0}^{1} {\phi^{\prime}_{c} (x)\phi^{\prime}_{c} (x){\text{d}}x} \int_{0}^{1} {y^{\prime\prime}_{c} (x)\phi_{c} (x){\text{d}}x} }}{{2\beta_{c}^{2} }} - \frac{{\lambda_{c} \int_{0}^{1} {y^{\prime}_{c} (x)\phi^{\prime}_{c} (x){\text{d}}x} \int_{0}^{1} {\phi^{\prime\prime}_{c} (x)\phi_{c} (x){\text{d}}x} }}{{\beta_{c}^{2} }}\right]\);

\(b_{14} = - \frac{1}{{\int_{0}^{1} {\phi_{c}^{2} (x)} {\text{d}}x}}\frac{{\lambda_{c} \int_{0}^{1} {\phi^{\prime}_{c} (x)\phi^{\prime}_{c} (x){\text{d}}x} \int_{0}^{1} {\phi^{\prime\prime}_{c} (x)\phi_{c} (x){\text{d}}x} }}{{2\beta_{c}^{2} }}\); \(F = \frac{{\int_{0}^{1} {F_{1} (x)\phi_{c} (x){\text{d}}x} }}{{\int_{0}^{1} {\phi_{c} (x){\text{d}}x} }}\); \(b_{15} = \frac{{F\int_{0}^{1} {\phi_{c} (x){\text{d}}x} }}{{\int_{0}^{1} {\phi_{c}^{2} (x)} {\text{d}}x}}\).

Appendix B

The expressions of the coefficients in Eqs. (22), (25), (42), (54), and (55) are given as follows:

\(\Gamma_{11} = \left( - 3b_{14} + \frac{{10b_{13}^{2} }}{{3\omega_{c}^{2} }}\right)\); \(\Gamma_{12} = \left(b_{14} + \frac{{2b_{13}^{2} }}{{3\omega_{c}^{2} }}\right)\); \(\overline{\Gamma }_{11} = \frac{{b_{12} b_{15} }}{{8\omega_{c} }}\); \(\overline{\Gamma }_{12} = - \frac{{b_{15} \sigma }}{{4\omega_{c} }}\); \(\overline{\Gamma }_{13} = - \frac{{5b_{13}^{2} b_{15} }}{{12\omega_{c}^{4} }} + \frac{{3b_{14} b_{15} }}{{8\omega_{c}^{2} }}\); \(\overline{\Gamma }_{14} = \frac{{7b_{13}^{2} b_{15} }}{{18\omega_{c}^{4} }} - \frac{{3b_{14} b_{15} }}{{4\omega_{c}^{2} }}\); \(\overline{\Gamma }_{15} = - \frac{{11b_{12} b_{13}^{2} }}{{9\omega_{c}^{3} }} + \frac{{3b_{12} b_{14} }}{{2\omega_{c} }}\); \(\overline{\Gamma }_{16} = \frac{{485b_{13}^{4} }}{{54\omega_{c}^{6} }} - \frac{{173b_{13}^{2} b_{14} }}{{6\omega_{c}^{4} }} + \frac{{15b_{14}^{2} }}{{8\omega_{c}^{2} }}\);

\(\Gamma_{21} = \frac{{b_{12}^{2} }}{4} - 6b_{14} \Lambda^{2} + \frac{{3b_{13}^{2} \Lambda^{2} }}{{\omega_{c}^{2} }} - \frac{{4b_{13}^{2} \Lambda^{2} }}{{\Omega (\Omega + 2\omega_{c} )}}\); \(\Gamma_{22} = \frac{{b_{13} \Lambda \sigma }}{{\omega_{c} }}\); \(\Gamma_{23} = - \frac{{2b_{12} b_{13} \Lambda \Omega }}{{\Omega^{2} - \omega_{c}^{2} }}\); \(\Gamma_{24} = - 3b_{14} + \frac{{10b_{13}^{2} }}{{3\omega_{c}^{2} }}\).

\(\Gamma_{31} = - 3b_{14} \Lambda - \frac{{4b_{13}^{2} \Lambda }}{{\Omega (\Omega - 2\omega_{c} )}} - \frac{{2b_{13}^{2} \Lambda }}{{3\omega_{c}^{2} }}\); \(\Gamma_{32} = - b_{12} \omega_{c}\); \(\Gamma_{33} = - 6b_{14} \Lambda^{2} - \frac{{4b_{13}^{2} \Lambda^{2} }}{{\Omega (\Omega - 2\omega_{c} )}} + \frac{{4b_{13}^{2} \Lambda^{2} }}{{\omega_{c}^{2} }} - \frac{{4b_{13}^{2} \Lambda^{2} }}{{\Omega (\Omega + 2\omega_{c} )}}\); \(\Gamma_{34} = - 3b_{14} + \frac{{10b_{13}^{2} }}{{3\omega_{c}^{2} }}\).

Appendix C

To seek a second-order approximation, the solution of qc is uniformly expanded in power series of ε, namely

$$q_{c} = \sum\limits_{i = 1}^{3} {\varepsilon^{i - 1} q_{ci} (T_{0} ,T_{2} )} + O(\varepsilon^{3} ).$$
(C.1)

Here, it should be noted that qc is found to be independent of T1 by eliminating the secular terms in the equation of order \(\varepsilon^{1}\). Therefore, T1 is dropped in Eq. (C.1). Following similar treatment to that of higher-order expansion, the following autonomous modulation equations can be derived:

$$D_{2}^{1} a = - \frac{{b_{12} a}}{2} + \frac{{b_{15} \sin \alpha }}{{2\omega_{c} }},$$
(C.2)
$$aD_{2}^{1} \alpha = a\sigma + \frac{{\Gamma_{11} a^{3} }}{{8\omega_{c} }} + \frac{{b_{15} \cos \alpha }}{{2\omega_{c} }}.$$
(C.3)

Letting \(D_{2}^{1} a = D_{2}^{1} \alpha = 0\) and eliminating \(\alpha\), Eqs. (C.2) and (C.3) can be simplified as

$$\frac{{b_{12}^{2} a^{2} }}{4} + \left(a\sigma + \frac{{\Gamma_{11} a^{3} }}{{8\omega_{c} }}\right)^{2} = \frac{{b_{15}^{2} }}{{4\omega_{c}^{2} }}.$$
(C.4)

The stable solutions of the system can be obtained according to Eq. (C.4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Kang, H., Guo, T. et al. Nonlinear planar vibrations of a cable with a linear damper. Acta Mech 233, 1393–1412 (2022). https://doi.org/10.1007/s00707-022-03171-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03171-0

Navigation