Skip to main content
Log in

Dynamic stress concentration of a non-circular cavern in a viscoelastic medium subjected to a plane P-wave

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An analytical method for solving the dynamic response of an underground cavern with arbitrary shape in a viscoelastic rock mass under a plane P-wave is deduced based on the theory of stress wave and the method of complex function. The seismic quality factors are used to represent the viscoelastic behavior of the rock mass. The dynamic stress concentration factors (DSCF) of an arch-shaped cavern as example are discussed with considering different influencing parameters, e.g., seismic quality factors (under two frequencies) of surrounding rock mass, incident angle of incident plane P-wave, arch radius, and span height ratio of the cavern. The research result shows that the seismic quality factors of the surrounding rock mass are of significant importance for the scattering of the plane P-wave. The seismic quality factors of the surrounding rock mass change the distribution characteristics and scale of the DSCF compared with an elastic rock mass. Under the coupling effect of seismic quality factor and other effects, the change of DSCF around the cavern is more complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aki, K., Richards, P.G.: Quantitative Seismology: Theory and Methods, vol. 1. WH Freeman & Co, San Francisco (1980)

    Google Scholar 

  2. Cormier, V.F.: Seismic Attenuation: Observation and Measurement. In: James, D.E. (ed.) Geophysics, pp. 1005–1018. Springer, New York (1989)

    Chapter  Google Scholar 

  3. Chai, S.B., Li, J.C., Rong, L.F., et al.: Theoretical study for induced seismic wave propagation across rock masses during underground exploitation. Geomech. Geophys. Geo-Energy Geo-Resour. 3(2), 95–105 (2017)

    Article  Google Scholar 

  4. Davis, C.A., Lee, V.W., Bardet, J.P.: Transverse response of underground cavities and pipes to incident SV waves. Earthq. Eng. Struct. Dynam. 30(3), 383–410 (2001)

    Article  Google Scholar 

  5. Deng, X.F., Zhu, J.B., Chen, S.G., Zhao, Z.Y., Zhou, Y.X., Zhao, J.: Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses. Tunn. Undergr. Space Technol. 43, 88–100 (2014)

    Article  Google Scholar 

  6. Dravinski, M., Michael, C.Y.: Peak surface motion due to scattering of plane harmonic P, SV, or Rayleigh waves by a rough cavity embedded in an elastic half-space. J. Seismolog. 15(1), 131–145 (2011)

    Article  Google Scholar 

  7. Fang, X.Q., Zhang, T.F., Li, B.L., Yuan, R.J.: Elastic-slip interface effect on dynamic stress around twin tunnels in soil medium subjected to blast waves. Comput. Geotechn. 119, 103301 (2020)

    Article  Google Scholar 

  8. Fang, X.Q., Jin, H.X., Wang, B.L.: Dynamic interaction of two circular lined tunnels with imperfect interfaces under cylindrical P-waves. Int. J. Rock Mech. Min. Sci. 79, 172–182 (2015)

    Article  Google Scholar 

  9. Gatmiri, B., Eslami, H.: Scattering of harmonic waves by a circular cavity in a porous medium: complex functions theory approach. Int. J. Geomech. 7(5), 371–381 (2007)

    Article  Google Scholar 

  10. Hashash, Y.M., Hook, J.J., Schmidt, B., et al.: Seismic design and analysis of underground structures. Tunn. Undergr. Space Technol. 16(4), 247–293 (2001)

    Article  Google Scholar 

  11. Jiang, Y., Wang, C., Zhao, X.: Damage assessment of tunnels caused by the 2004 Mid Niigata prefecture earthquake using Hayashi’s quantification theory type II. Nat. Hazards 53, 425–441 (2010)

    Article  Google Scholar 

  12. Johnson, P.A., Rasolofosaon, P.N.J.: Nonlinear elasticity and stress-induced anisotropy in rock. J. Geophys. Res. Solid Earth 101(B2), 3113–3124 (1996)

    Article  Google Scholar 

  13. Jiang, X.Y.: Complex Variable Function Solution of Stress Field of Surrounding Rock in Coal Mine. Liaoning Technical University, Fuxin (2013). (in Chinese)

    Google Scholar 

  14. Liu, D.K., Gai, B.Z., Tao, G.Y.: Applications of the method of complex function to dynamic stress concentration. Wave Motion 4, 293–304 (1982)

    Article  MathSciNet  Google Scholar 

  15. Liu, Q., Zhang, C., Todorovska, M.I.: Scattering of SH waves by a shallow rectangular cavity in an elastic half space. Soil Dyn. Earthq. Eng. 90, 147–157 (2016)

    Article  Google Scholar 

  16. Lee, V.W., Trifunac, M.D.: Response of tunnels to incident SH-waves. J. Eng. Mech. Div. 105(4), 643–659 (1979)

    Article  Google Scholar 

  17. Li, J.C., Rong, L.F., Li, H.B., Hong, S.N.: An SHPB test study on stress wave energy attenuation in jointed rock masses. Rock Mech. Rock Eng. 52(2), 403–420 (2019)

    Article  Google Scholar 

  18. Liu, Q., Zhao, M., Wang, L.: Scattering of plane P, SV or Rayleigh waves by a shallow lined tunnel in an elastic half space. Soil Dyn. Earthq. Eng. 49, 52–63 (2013)

    Article  Google Scholar 

  19. Lucet, N., Zinszner, B.: Effects of heterogeneities and anisotropy on sonic and ultrasonic attenuation in rocks. Geophysics 57(8), 1018–1026 (1992)

    Article  Google Scholar 

  20. Liang, J., Zhang, H., Lee, V.W.: A series solution for surface motion amplification due to underground twin tunnels: incident SV waves. Earthq. Eng. Eng. Vib. 2(2), 289–298 (2003)

    Article  Google Scholar 

  21. Li, J.C., Li, N.N., Chai, S.B., et al.: Analytical study of ground motion caused by seismic wave propagation across faulted rock masses. Int. J. Numer. Anal. Meth. Geomech. 42(1), 95–109 (2018)

    Article  Google Scholar 

  22. Pao, Y.H., Mow, C.C.: The Diffraction of Elastic Waves and Dynamic Stress Concentrations. Crane, Russak & Company Inc., New York (1973)

    Book  Google Scholar 

  23. Shen, Y., Gao, B., Yang, X., Tao, S.: Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake. Eng. Geol. 180, 85–98 (2014)

    Article  Google Scholar 

  24. Wang, J.H., Zhou, X.L., Lu, J.F.: Dynamic stress concentration around elliptic cavities in saturated poroelastic soil under harmonic plane waves. Int. J. Solids Struct. 42(14), 4295–4310 (2005)

    Article  Google Scholar 

  25. Wang, X., Yuan, W., Yan, Y.T., Zhang, X.: Scale effect of mechanical properties of jointed rock mass: a numerical study based on particle flow code. Geomech. Eng. 21(3), 259–268 (2020)

    Google Scholar 

  26. Wang, X., Li, J.C., Zhao, X.B., Liang, Y.: Propagation characteristics and prediction of blast-induced vibration on closely spaced rock tunnels. Tunn. Undergr. Space. Technol. 123, 104416 (2022)

    Article  Google Scholar 

  27. Yi, C., Zhang, P., Johansson, D., et al.: Dynamic response of a circular lined tunnel with an imperfect interface subjected to cylindrical P-waves. Comput. Geotech. 55, 165–171 (2014)

    Article  Google Scholar 

  28. Yu, X.F., Zheng, Y.R., Liu, H.H., Fang, Z.C.: Stability Analysis of Surrounding Rock of Underground Cavern. Coal Industry Press, Beijing (1983).. ((in Chinese))

    Google Scholar 

  29. Zhang, X.P., Jiang, Y.J., Sugimoto, S.: Seismic damage assessment of mountain tunnel: a case study on the Tawarayama tunnel due to the 2016 Kumamoto earthquake. Tunn. Undergr. Space Technol. 71(1), 138–148 (2018)

    Article  Google Scholar 

  30. Zhang, X., Jiang, Y., Sugimoto, S.: Anti-plane dynamic response of a non-circular tunnel with imperfect interface in anisotropic rock mass. Tunn. Undergr. Space Technol. 87, 134–144 (2019)

    Article  Google Scholar 

  31. Zhang, X., Jiang, Y., Chen, L., Wang, X., Golsanami, N., Zhou, L.: Anti-plane seismic performance of a shallow-buried tunnel with imperfect interface in anisotropic half-space. Tunnell. Undergr. Space Technol. 112, 103906 (2021)

    Article  Google Scholar 

  32. Zhou, F., Cao, X.: Comparison between exact solutions and approximate solutions of deep tunnels. Appl. Math. Mech. 38(10), 1166–1179 (2017). ((in Chinese))

    Google Scholar 

Download references

Acknowledgements

The research was supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX19_0094); the Shandong Provincial Natural Science Foundation (No. ZR2020QE270); the Key Laboratory of Deep Earth Science and Engineering (Sichuan University), Ministry of Education, China (No. DESE202109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Coefficients of \(E_{n}^{(11)}\), \(E_{n}^{(12)}\), \(E_{n}^{(21)}\), \(E_{n}^{(22)}\), \(E_{{}}^{(1)}\), and \(E_{{}}^{(2)}\) as presented in Eqs. (32) and (33)

$$E_{n}^{(11)} = - \alpha^{2} (\overline{\lambda } + \overline{\mu })H_{n}^{(1)} (\alpha \left| {w(\eta )} \right|)\left[ {\frac{w(\eta )}{{\left| {w(\eta )} \right|}}} \right]^{n} + \frac{{\overline{\mu }\alpha^{2} \eta^{2} w^{\prime}(\eta )}}{{\overline{w^{\prime}(\eta )} }}H_{n - 2}^{(1)} (\alpha \left| {w(\eta )} \right|)\left[ {\frac{w(\eta )}{{\left| {w(\eta )} \right|}}} \right]^{n - 2}, $$
(43)
$$E_{n}^{(12)} = \frac{{i\overline{\mu }\beta^{2} \eta^{2} w^{\prime}(\eta )}}{{\overline{w^{\prime}(\eta )} }}H_{n - 2}^{(1)} (\beta \left| {w(\eta )} \right|)\left[ {\frac{w(\eta )}{{\left| {w(\eta )} \right|}}} \right]^{n - 2}, $$
(44)
$$E_{n}^{(21)} = - \alpha^{2} (\overline{\lambda } + \overline{\mu })H_{n}^{(1)} (\alpha \left| {w(\eta )} \right|)\left[ {\frac{w(\eta )}{{\left| {w(\eta )} \right|}}} \right]^{n} + \frac{{\overline{\mu }\alpha^{2} \overline{\eta }^{2} \overline{w^{\prime}(\eta )} }}{w^{\prime}(\eta )}H_{n + 2}^{(1)} (\alpha \left| {w(\eta )} \right|)\left[ {\frac{w(\eta )}{{\left| {w(\eta )} \right|}}} \right]^{n + 2}, $$
(45)
$$E_{n}^{(22)} = - \frac{{i\overline{\mu }\beta^{2} \overline{\eta }^{2} \overline{w^{\prime}(\eta )} }}{w^{\prime}(\eta )}H_{n + 2}^{(1)} (\beta \left| {w(\eta )} \right|)\left[ {\frac{w(\eta )}{{\left| {w(\eta )} \right|}}} \right]^{n + 2}, $$
(46)
$$E_{{}}^{(1)} = \left( {(\overline{\lambda } + \overline{\mu }) + \frac{{\mu \eta^{2} w^{\prime}(\eta )}}{{\overline{w^{\prime}(\eta )} }}\exp ( - 2i\theta_{0} )} \right)\alpha^{2} \varphi_{0} \cdot \exp \left[ {\frac{i\alpha }{2}(w(\eta )\exp ( - i\theta_{0} ) + \overline{w(\eta )} \exp (i\theta_{0} ))} \right], $$
(47)
$$E_{{}}^{(2)} = \left( {(\overline{\lambda } + \overline{\mu }) + \frac{{\mu \overline{\eta }^{2} \overline{w^{\prime}(\eta )} }}{w^{\prime}(\eta )}\exp (2i\theta_{0} )} \right)\alpha^{2} \varphi_{0} \cdot \exp \left[ {\frac{i\alpha }{2}(w(\eta )\exp ( - i\theta_{0} ) + \overline{w(\eta )} \exp (i\theta_{0} ))} \right]. $$
(48)

Appendix B

Coefficients of R, b2, b3, b4, and b5 in Eq. (42):

$$R = \frac{b}{{1 - b_{2} - b_{4} /3}}, $$
(49)
$$b_{2} = c_{12} + c_{22} + c_{32} - c_{11} c_{21} - (c_{11} + c_{21} )c_{31}^{{}}, $$
(50)
$$b_{3} = c_{13} + c_{23} + c_{33} + c_{11} c_{22} + c_{12} c_{21} + (c_{12} - c_{11} c_{21} + c_{22} )c_{31} + (c_{11} + c_{21} )c_{32}, $$
(51)
$$\begin{gathered} b_{4} = c_{14} + c_{24} + c_{34} { - }c_{11} c_{23} + c_{12} c_{22} { - }c_{13} c_{21} - (c_{13} + c_{23} + c_{11} c_{22} + c_{12} c_{21} )c_{31} \\ + (c_{21} - c_{11} c_{21} + c_{22} )c_{32} - (c_{11} + c_{21} )c_{33} \\ \end{gathered}, $$
(52)
$$\begin{gathered} b_{5} = c_{15} + c_{25} + c_{35} + c_{11} c_{24} + c_{12} c_{23} + c_{13} c_{22} + c_{14} c_{21} + (c_{14} + c_{24} - c_{11} c_{23} + c_{12} c_{22} - c_{13} c_{21} )c_{31} \\ + (c_{13} + c_{23} + c_{11} c_{22} + c_{12} c_{21} )c_{32} + (c_{12} - c_{11} c_{21} + c_{22} )c_{33} + (c_{11} + c_{21} )c_{34} \\ \end{gathered}$$
(53)

where

\(c_{l1} = - \lambda_{l} \Phi_{l}\), \(c_{l2} = - \Phi_{l} \left[ {1 + \frac{{\lambda_{l}^{2} }}{2}\left( {\Phi_{l} - 1} \right)} \right]\), \(c_{l3} = \lambda_{l} \Phi_{l} \left( {\Phi_{l} - 1} \right)\left[ {1 + \frac{{\lambda_{l}^{2} }}{6}\left( {\Phi_{l} - 2} \right)} \right]\),

\(c_{l4} = \Phi_{l} \left( {\Phi_{l} - 1} \right)\left[ {\frac{1}{2} + \frac{{\lambda_{l}^{2} }}{2}\left( {\Phi_{l} - 2} \right) + \frac{{\lambda_{l}^{4} }}{24}\left( {\Phi_{l} - 2} \right)\left( {\Phi_{l} - 3} \right)} \right]\),

\(c_{l5} = { - }\lambda_{l} \Phi_{l} \left( {\Phi_{l} - 1} \right)\left( {\Phi_{l} - 2} \right)\left[ {\frac{1}{2} + \frac{{\lambda_{l}^{2} }}{6}\left( {\Phi_{l} - 3} \right) + \frac{{\lambda_{l}^{4} }}{1204}\left( {\Phi_{l} - 3} \right)\left( {\Phi_{l} - 4} \right)} \right]\), \(l\) = 1, 2, 3,

\(\lambda_{1} = 2\cos (k_{1} \pi )\), \(\lambda_{2} = 2\cos (k_{2} \pi )\), \(\lambda_{3} = 2\cos (k_{3} \pi )\),

\(\Phi_{1} = \frac{{v_{1} }}{\pi }{ - }1\), \(\Phi_{2} = \frac{{v_{2} }}{\pi }{ - }1\),\(\Phi_{3} = \frac{{v_{3} }}{\pi }{ - }1\),

\(v_{1} = \frac{3\pi }{2}{\text{ - arctan}}\frac{b - a}{{2h - H}}\), \(v_{2} = \pi + {\text{arctan}}\frac{b - a}{{2h - H}}\),\(v_{3} = \frac{3\pi }{2}\), and the value of \(k_{1}\),\(k_{2}\), \(k_{3}\) can be obtained by trial method according to the following equation:

$$\Phi_{1} \cos \left( {k_{1} \pi } \right) + \Phi_{2} \cos \left( {k_{2} \pi } \right) + \Phi_{3} \cos \left( {k_{3} \pi } \right) = 0. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, X.P. Dynamic stress concentration of a non-circular cavern in a viscoelastic medium subjected to a plane P-wave. Acta Mech 233, 1455–1466 (2022). https://doi.org/10.1007/s00707-022-03169-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03169-8

Navigation