Skip to main content

Advertisement

Log in

Intense cross-scale energy cascades resembling “mechanical turbulence” in harmonically driven strongly nonlinear hierarchical chains of oscillators

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present study, the dynamics of one- and two-degree-of-freedom linear oscillators attached to hierarchical chains of oscillators coupled by strongly nonlinear cubic springs in parallel with viscous dampers are investigated. The mass, stiffness, and damping properties of the nonlinear oscillators are specified to follow a certain scaling rule, in such a way that their mass, stiffness, and damping properties decrease along the chain. The linear oscillators are driven harmonically near to their primary resonances. For sufficiently low excitation levels, linear behavior prevails leading to nearly harmonic responses, where the mechanical energy remains localized in the directly forced linear oscillator. For sufficiently high excitation level (that is, above a critical level of the forcing amplitude), however, the system responds in a chaotic way, where a substantial part of the energy is transferred across the hierarchical nonlinear chain in an energy cascade. Interestingly, there exist “chaotic bands” where all cubic oscillators are simultaneously activated or deactivated depending on the frequency; hence, a chaotic synchronization occurs in the system. When energy cascading is initiated the smaller-scale cubic oscillators become driven by the chaotic dynamics of the larger-scale cubic oscillators. Once the oscillator chain enters the chaotic response regime, the pattern of nonlinear energy cascading resembles (but is not identical to) the –5/3 Kolmogorov energy cascading power law observed in fully developed turbulence. Similarities and differences in the observed mechanical energy cascades and those realized in turbulent flows are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Richardson, L.F.: Weather prediction by numerical process. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  2. Frisch, U.: Turbulence: The legacy of A.N. Kolmogorov. Cambridge University Press (1995)

    Book  Google Scholar 

  3. Vakakis, A.F.: Passive nonlinear targeted energy transfer. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2127), 20170132 (2018)

    Article  MathSciNet  Google Scholar 

  4. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100(4), 3061–3107 (2020)

    Article  Google Scholar 

  5. Lu, Z., Wang, Z.X., Zhou, Y., Lu, X.L.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018)

    Article  Google Scholar 

  6. Balaji, P.S., Karthik SelvaKumar, K.: Applications of nonlinearity in passive vibration control: a review. J. Vib. Eng. Technol. 9, 183–213 (2020)

    Article  Google Scholar 

  7. Quinn, D.D., Triplett, A.L., Bergman, L.A., Vakakis, A.F.: Comparing linear and essentially nonlinear vibration-based energy harvesting. J. Vib. Acoustics 133(1), 011001 (2011)

    Article  Google Scholar 

  8. Zang, J., Cao, R.Q., Zhang, Y.W., Fang, B., Chen, L.Q.: A lever-enhanced nonlinear energy sink absorber harvesting vibratory energy via giant magnetostrictive-piezoelectricity. Commun. Nonlinear Sci. Numer. Simul. 95, 105620 (2021)

    Article  MathSciNet  Google Scholar 

  9. Mojahed, A., Gendelman, O.V., Vakakis, A.F.: Breather arrest, localization, and acoustic non-reciprocity in dissipative nonlinear lattices. J. Acoust. Soc. Am. 146(1), 826–842 (2019)

    Article  Google Scholar 

  10. Bunyan, J., Moore, K.J., Mojahed, A., Fronk, M.D., Leamy, M., Tawfick, S., Vakakis, A.F.: Acoustic nonreciprocity in a lattice incorporating nonlinearity, asymmetry, and internal scale hierarchy: experimental study. Phys. Rev. E 97(5), 052211 (2018)

    Article  Google Scholar 

  11. Ditlevsen, P.D.: Turbulence and shell models. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  12. Munoz, V., Dominguez, M., Nigro, G., Riquelme, M., Carbone, V.: Fractality of an MHD shell model for turbulent plasma driven by solar wind data: a review. J. Atmos. Solar-Terr. Phys. 214, 105524 (2021)

    Article  Google Scholar 

  13. Bak, B.D., Kalmar-Nagy, T.: A linear model of turbulence: reproducing the Kolmogorov-spectrum. IFAC PapersOnLine 51(2), 595–600 (2018)

    Article  Google Scholar 

  14. Kalmar-Nagy, T., Bak, B.D.: An intriguing analogy of Kolmogorov’s scaling law in a hierarchical mass-spring-damper model. Nonlinear Dyn. 95(4), 3193–3203 (2019)

    Article  Google Scholar 

  15. Bak, B.D., Kalmar-Nagy, T.: Energy cascade in a nonlinear mechanistic model of turbulence. Tech. Mech. 39(1), 64–71 (2019)

    Google Scholar 

  16. Düring, G., Krstulovic, G.: Exact result in strong wave turbulence of thin elastic plates. Phys. Rev. E 97, 020201(R) (2018)

    Article  Google Scholar 

  17. Humbert, T., Josserand, C., Touzé, C., Cadot, O.: Phenomenological model for predicting stationary and non-stationary spectra of wave turbulence in vibrating plates. Phys. D 316, 34–42 (2016)

    Article  MathSciNet  Google Scholar 

  18. Humbert, T., Cadot, O., Düring, G., Josserand, C., Rica, S., Touzé, C.: Wave turbulence in vibrating plates: the effect of damping. Europhys. Lett. 102, 30002 (2013)

    Article  Google Scholar 

  19. Boudaoud, A., Cadot, O., Odille, B., Touzé, C.: Observation of wave turbulence in vibrating plates. Phys. Rev. Lett. 100, 234504 (2008)

    Article  Google Scholar 

  20. Mordant, N.: Are there waves in elastic wave turbulence? Phys. Rev. Lett. 100(23), 234505 (2008)

    Article  Google Scholar 

  21. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge, UK (2001)

    Book  Google Scholar 

  22. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  23. Argyris, J.H., Friedrich, R., Haase, M., Faust, G.: An exploration of dynamical systems and chaos: completely revised and enlarged, 2nd edn. Springer, Berlin (2015)

    MATH  Google Scholar 

  24. Moore, K.J., Bunyan, J., Tawfick, S., Gendelman, O.V., Li, S., Leamy, M., Vakakis, A.F.: Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy. Phys. Rev. E 97, 012219 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grant No. 201908120069 from China Scholarship Council which supported the sabbatical leave of Jian’en Chen to the University of Illinois. This support is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian En Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J.E., Theurich, T., Krack, M. et al. Intense cross-scale energy cascades resembling “mechanical turbulence” in harmonically driven strongly nonlinear hierarchical chains of oscillators. Acta Mech 233, 1289–1305 (2022). https://doi.org/10.1007/s00707-022-03159-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03159-w

Navigation