Skip to main content
Log in

Length scale effect on the buckling behavior of a graphene sheets using modified couple stress theory and molecular dynamics method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the dependence of the length scale parameter on the dimensions of a graphene sheet is investigated. Then, the buckling and elastic properties of the graphene sheet are estimated. To incorporate the size effect in the buckling behavior of graphene sheets, a theoretical framework of non-classical continuous mechanics has been applied using the modified couple stress (MCS) theory in classical plate equations. To get an accurate estimate of the elastic properties and buckling behavior of the graphene plate, we tried to rewrite the finite element (FE) method expression of the Kirchhoff plate equations by adding the modified couple stress theory equations. In this way, this paper includes the dependence of the length scale parameter to the dimensions of the graphene sheet due to the size effect. The length scale parameter for each sheet was estimated by calculation of the bending rigidity with the molecular dynamics (MD) and the equations of elastic properties methods. The calculations show that understanding the buckling behavior of nanostructures requires estimating size dependence parameters such as length scale and mechanical properties to achieve acceptable results for buckling forces. In addition, the results show that the buckling instability of graphene sheets depends significantly on their size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Korobeynikov, S.N., Alyokhin, V.V., Babichev, A.V.: Simulation of mechanical parameters of graphene using the DREIDING force field. Acta Mech. 229, 2343–2378 (2018)

    Article  MathSciNet  Google Scholar 

  2. Sha’bani, F., Rash-Ahmadi, S.: Molecular dynamics investigation of pull-in instability in graphene sheet under electrostatic and van der Waals forces. Adv. Nano Res. 11(2), 173–181 (2021)

    Google Scholar 

  3. Genoese, A., Genoese, A., Salerno, G.: In-plane and out-of-plane tensile behaviour of single-layer graphene sheets: a new interatomic potential. Acta Mech. 231, 2915–2930 (2020)

    Article  MathSciNet  Google Scholar 

  4. Shafiei, Z., Sarrami-Foroushani, S., Azhari, F., Azhari, M.: Application of modified couple-stress theory to stability and free vibration analysis of single and multi-layered graphene sheets. Aerosp. Sci. Technol. 98, 105652 (2020)

    Article  Google Scholar 

  5. Bekir, A., Ömer, C.: Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater. Des. 42, 164–171 (2012)

    Article  Google Scholar 

  6. Akbarzadeh-Khorshidi, M.: The material length scale parameter used in couple stress theories is not a material constant. Int. J. Eng. Sci. 133, 15–25 (2018)

    Article  Google Scholar 

  7. Arefi, M.: Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory. Struct. Eng. Mech. 69(2), 145–153 (2019)

    Google Scholar 

  8. Lata, P., Kaur, H.: Effect of length scale parameters on transversely isotropic thermoelastic medium using new modified couple stress theory. Struct. Eng. Mech. 76(1), 17–26 (2020)

    Google Scholar 

  9. Ma, H.M., Gao, X.L., Reddy, J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  Google Scholar 

  10. Korobeynikov, S.N., Alyokhin, V.V., Babichev, A.V.: On the molecular mechanics of single layer graphene sheets. Int. J. Eng. Sci. 133, 109–131 (2018)

    Article  MathSciNet  Google Scholar 

  11. Yang, K., Chen, Y., Pan, F., Wang, S., Ma, Y., Liu, Q.: Buckling Behavior of Substrate Supported Graphene Sheets. Materials 9(1), 32 (2016)

    Article  Google Scholar 

  12. Genoese, A., Genoese, A., Rizzi, N.L., Salerno, G.: Buckling analysis of single-layer graphene sheets using molecular mechanics. Front. Mater. 6, 2296–8016 (2019)

    Article  Google Scholar 

  13. Xiang, Y., Shen, H.S.: Tension buckling of graphene: a new phenotype. Solid State Commun. 192, 20–23 (2014)

    Article  Google Scholar 

  14. Xiang, Y., Shen, H.: Compressive buckling of rippled graphene via molecular dynamics simulations. Int. J. Struct. Stab. Dyn. 16(10), 1550071 (2016)

    Article  Google Scholar 

  15. Jung, W.Y., Han, S.C., Park, W.T.: A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium. Compos. B Eng. 60, 746–756 (2014)

    Article  Google Scholar 

  16. Liu, Y., Wang, Y.: Size-Dependent free vibration and buckling of three-dimensional graphene foam microshells based on modified couple stress theory. Materials 12(5), 729 (2019)

    Article  Google Scholar 

  17. Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P.A., Nguyen-Xuan, H., Vo, T.P.: A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Comput. Methods Appl. Mech. 313, 904–940 (2017)

    Article  MathSciNet  Google Scholar 

  18. Babu, B., Patel, B.P.: A new computationally efficient finite element formulation for nanoplates using second-order strain gradient Kirchhoff’s plate theory. Compos. B Eng. 168, 302–311 (2019)

    Article  Google Scholar 

  19. Bazant, Z.P., Cedolin, L., Hutchinson, J.W.: Stability of structures: elastic, inelastic, fracture, and damage theories. ASME. J. Appl. Mech 60(2), 567–568 (1993)

    Article  Google Scholar 

  20. Ventsel, E., Krauthammer, T., Carrera, E.: Thin Plates and Shells: Theory, Analysis, and Applications. ASME. Appl. Mech. Rev 55(4), 260–262 (2002)

    Article  Google Scholar 

  21. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, Volume 2: Solid Mechanics. 140–142 (2009)

  22. Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56 (1995)

    Article  Google Scholar 

  23. Lindahl, E., Hess, B., van der Spoel, D.: Gromacs 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Modell. 7, 306–317 (2001)

    Article  Google Scholar 

  24. Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys 117(1), 1–19 (1995)

    Article  Google Scholar 

  25. Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with inter-molecular interactions. J. Chem. Phys. 112(14), 6472–6486 (2000)

    Article  Google Scholar 

  26. Fankhänel, J., Arash, B., Rolfes, R.: Elastic interphase properties of nanoparticle/epoxy nanocomposites: a molecular dynamics study. Compos. Part B Eng. 176(1), 107211 (2019)

    Article  Google Scholar 

  27. Wang, Q.: Simulations of the bending rigidity of graphene. Phys. Lett. A 374(9), 1180–1183 (2010)

    Article  Google Scholar 

  28. Bu, H., Chen, Y., Zou, M., Yi, H., Bi, K., Ni, Z.: Atomistic simulations of mechanical properties of graphene nanoribbons. Phys. Lett. A 373(37), 3359–3362 (2009)

    Article  Google Scholar 

  29. Rouhi, S., Ansari, R.: Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Physica E Low-Dimens. Syst. Nanostruct. 44(4), 764–772 (2012)

    Article  Google Scholar 

  30. Sakhaee-Pour, A.: Elastic buckling of single-layered graphene sheet. Comput. Mater. Sci. 45(2), 266–270 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrand Rash-Ahmadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sha’bani, F., Rash-Ahmadi, S. Length scale effect on the buckling behavior of a graphene sheets using modified couple stress theory and molecular dynamics method. Acta Mech 233, 943–960 (2022). https://doi.org/10.1007/s00707-022-03156-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03156-z

Navigation