Skip to main content
Log in

Static and dynamic mechanical behaviors of cracked Mindlin plates in ordinary state-based peridynamic framework

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An ordinary state-based peridynamic (PD) model based on the Mindlin plate theory is presented to deal with fracture mechanics problems. Static and dynamic stress resultant intensity factors regarded as the primary fracture parameters for plate structures are evaluated by the displacement extrapolation method. Owing to the PD surface effect, however, the accuracy of the displacement field near crack surfaces is significantly affected. Therefore, the arbitrary horizon domain method is adopted to correct the surface effect. It derives the variable PD parameters to properly describe mechanical behaviors for each material point. Several numerical examples are investigated to examine the performance of the presented method. It indicates that the PD Mindlin plate model incorporated with the arbitrary horizon domain method validly minimizes the influence of the PD surface effect and provides an effective approach to evaluate static and dynamic moment intensity factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. O’Grady, J., Foster, J.: Peridynamic plates and flat shells: a non-ordinary, state-based model. Int. J. Solids Struct. 51, 4572–4579 (2014)

    Article  Google Scholar 

  4. O’Grady, J., Foster, J.: A meshfree method for bending and failure in non-ordinary peridynamic shells. Comput. Mech. 57, 921–929 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Diyaroglu, C., Oterkus, E., Oterkus, S., Madenci, E.: Peridynamics for bending of beams and plates with transverse shear deformation. Int. J. Solids Struct. 69–70, 152–168 (2015)

    Article  Google Scholar 

  6. Chowdhury, S.R., Roy, P., Roy, D., Reddy, J.N.: A peridynamic theory for linear elastic shells. Int. J. Solids Struct. 84, 110–132 (2016)

    Article  Google Scholar 

  7. Nguyen, C.T., Oterkus, S.: Peridynamics for the thermomechanical behavior of shell structures. Eng. Fract. Mech. 219, 106623 (2019)

    Article  Google Scholar 

  8. Yang, Z., Vazic, B., Diyaroglu, C., Oterkus, E., Oterkus, S.: A Kirchhoff plate formulation in a state-based peridynamic framework. Math. Mech. Solids 25, 727–738 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, Z., Oterkus, E., Oterkus, S.: Peridynamic formulation for higher-order plate theory. J. Peridyn. Nonlocal Model. 3, 1–26 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Zhang, Q., Li, S., Zhang, A., Peng, Y., Yan, J.: A peridynamic Reissner-Mindlin shell theory. Int. J. Numer. Methods Eng. 122, 122–147 (2021)

    Article  MathSciNet  Google Scholar 

  11. Nguyen, C.T., Oterkus, S.: Ordinary state-based peridynamics for geometrically nonlinear analysis of plates. Theor. Appl. Fract. Mech. 112, 102877 (2021)

    Article  Google Scholar 

  12. Shen, G., Xia, Y., Hu, P., Zheng, G.: Construction of peridynamic beam and shell models on the basis of the micro-beam bond obtained via interpolation method. Eur. J. Mech. A Solids 86, 104174 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen, G., Xia, Y., Li, W., Zheng, G., Hu, P.: Modeling of peridynamic beams and shells with transverse shear effect via interpolation method. Comput. Methods Appl. Mech. Eng. 378, 113716 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, Q., Li, S., Zhang, A., Peng, Y.: On nonlocal geometrically exact shell theory and modeling fracture in shell structures. Comput. Methods Appl. Mech. Eng. 386, 114074 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Le, Q.V., Bobaru, F.: Surface corrections for peridynamic models in elasticity and fracture. Comput. Mech. 61, 499–518 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Queiruga, A.F., Moridis, G.: Numerical experiments on the convergence properties of state-based peridynamic laws and influence functions in two-dimensional problems. Comput. Methods Appl. Mech. Eng. 322, 97–122 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, K.C.: The development of coupled peridynamics and ISO-geometric analysis method for modeling of crack propagation on ship-hull panels. Master Thesis, National Taiwan Ocean University (2020) (in Chinese)

  18. Dai, M.J., Tanaka, S., Guan, P.C., Oterkus, S., Oterkus, E.: Ordinary state-based peridynamic shell model with arbitrary horizon domains for surface effect correction. Theor. Appl. Fract. Mech. 115, 103068 (2021)

    Article  Google Scholar 

  19. Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)

    Article  Google Scholar 

  20. Hu, W., Ha, Y.D., Bobaru, F., Silling, S.A.: The formulation and computation of the nonlocal J-integral in bond-based peridynamics. Int. J. Fract. 176, 195–206 (2012)

    Article  Google Scholar 

  21. Stenstrom, C., Eriksson, K.: The J-contour integral in peridynamics via displacements. Int. J. Fract. 216, 173–183 (2019)

    Article  Google Scholar 

  22. Stenstrom, C., Eriksson, K.: The J-area integral applied in peridynamics. Int. J. Fract. 228, 127–142 (2021)

    Article  Google Scholar 

  23. Imachi, M., Tanaka, S., Bui, T.Q.: Mixed-mode dynamic stress intensity factors evaluation using ordinary state-based peridynamics. Theor. Appl. Fract. Mech. 93, 97–104 (2018)

    Article  Google Scholar 

  24. Imachi, M., Takei, T., Ozdemir, M., Tanaka, S., Oterkus, S., Oterkus, E.: A smoothed variable horizon peridynamics and its application to the fracture parameters evaluation. Acta Mech. 232, 533–553 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dai, M.J., Tanaka, S., Oterkus, S., Oterkus, E.: Mixed-mode stress intensity factors evaluation of flat shells under in-plane loading employing ordinary state-based peridynamics. Theor. Appl. Fract. Mech. 112, 102841 (2021)

    Article  Google Scholar 

  26. Dai, M.J., Tanaka, S., Bui, T.Q., Oterkus, S., Oterkus, E.: Fracture parameter analysis of flat shells under out-of-plane loading using ordinary state-based peridynamics. Eng. Fract. Mech. 244, 107560 (2021)

    Article  Google Scholar 

  27. Areias, P.M.A., Belytschko, T.: Non-linear analysis of shells with arbitrary evolving cracks using XFEM. Int. J. Numer. Methods Eng. 62, 384–415 (2005)

    Article  MATH  Google Scholar 

  28. Li, J., Khodaei, Z.S., Aliabadi, M.H.: Dynamic dual boundary element analyses for cracked Mindlin plates. Int. J. Solids Struct. 152–153, 248–260 (2018)

    Article  Google Scholar 

  29. Bobaru, F., Foster, J.T., Geubelle, P.H., Silling, S.A.: Handbook of Peridynamic Modeling. CRC Press Taylor & Francis Group, Boca Raton (2016)

    Book  MATH  Google Scholar 

  30. Kilic, B., Madenci, E.: An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theor. Appl. Fract. Mech. 53, 194–204 (2010)

    Article  Google Scholar 

  31. Madenci, E., Oterkus, E.: Peridynamic Theory and Its Applications. Springer, New York (2014)

    Book  MATH  Google Scholar 

  32. Underwood, P.: Dynamic relaxation. Comput. Methods Trans. Anal. 1, 245–265 (1983)

    MATH  Google Scholar 

  33. Liu, Z., Ye, H., Qian, D., Zhang, H., Zheng, Y.: A time-discontinuous peridynamic method for transient problems involving crack propagation. Int. J. Numer. Methods Eng. 122, 1824–1845 (2020)

    Article  MathSciNet  Google Scholar 

  34. Dirgantara, T., Aliabadi, M.H.: Dual boundary element formulation for fracture mechanics analysis of shear deformable shells. Int. J. Solids Struct. 38, 7769–7800 (2001)

    Article  MATH  Google Scholar 

  35. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sosa, H.A., Eischen, J.: Computation of stress intensity factors for plate bending via a path-independent integral. Eng. Fract. Mech. 25, 451–462 (1986)

    Article  Google Scholar 

  37. Dolbow, J., Moes, N., Belytschko, T.: Modeling fracture in Mindlin-Reissner plates with the extended finite element method. Int. J. Solids Struct. 37, 7161–7183 (2000)

    Article  MATH  Google Scholar 

  38. Guinea, G.V., Planas, J., Elices, M.: \(K_{\rm {I}}\) evaluation by the displacement extrapolation technique. Eng. Fract. Mech. 66, 243–255 (2000)

    Article  Google Scholar 

  39. Zhu, N., Oterkus, E.: Calculation of stress intensity factor using displacement extrapolation method in peridynamic framework. J. Mech. 36, 235–243 (2020)

    Article  Google Scholar 

  40. Han, Q., Wang, Y., Yin, Y., Wang, D.: Determination of stress intensity factor for mode I fatigue crack based on finite element analysis. Eng. Fract. Mech. 138, 118–126 (2015)

    Article  Google Scholar 

  41. Qian, G., Gonzalez-Albuixech, V.F., Niffenegger, M., Giner, E.: Comparison of \(K_{\rm {I}}\) calculation methods. Eng. Fract. Mech. 156, 52–67 (2016)

    Article  Google Scholar 

  42. Madenci, E., Dorduncu, M., Barut, A., Phan, N.: Weak form of peridynamics for nonlocal essential and natural boundary conditions. Comput. Methods Appl. Mech. Eng. 337, 598–631 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Scabbia, F., Zaccariotto, M., Galvanetto, U.: A novel and effective way to impose boundary conditions and to mitigate the surface effect in state-based peridynamics. Int. J. Numer. Methods Eng. 122, 5773–5811 (2021)

    Article  Google Scholar 

  44. Prudhomme, S., Diehl, P.: On the treatment of boundary conditions for bond-based peridynamic models. Comput. Methods Appl. Mech. Eng. 372, 113391 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges financial support from Japan–Taiwan Exchange Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Examination of boundary conditions in the nonlocal theory

Appendix A: Examination of boundary conditions in the nonlocal theory

The peridynamic method regarded as a nonlocal continuum theory requires some special treatments to impose boundary conditions, such as the weak form of peridynamics [42], the modified fictitious node method [43], and the variable horizon method [44]. In the present paper, volumetric regions (nonlocal boundary) are employed to implement external load and constraint boundary conditions (see Chap. 2 in Ref. [31]). For external load boundary conditions, the external load computed as body force density is applied on a real material layer along the boundary possessing nonzero volume. For constraint boundary conditions, the prescribed constraint is adopted on a fictitious layer with the particular length scale, \(\delta \), outside the physical boundary. Several numerical examples with constraint boundary conditions are successfully examined in Sect. 4. In “Appendix”, a numerical example with external load and constraint boundary conditions is investigated.

Fig. 18
figure 18

Cantilever square plate with a central crack under dynamic transverse shear load

Fig. 19
figure 19

Fracture behaviors of the cantilever square plate, a displacement \(u_z\) and rotation \(\theta _y\) nearby the crack tip, b normalized moment intensity factor for different PD approaches

A cantilever square plate with a central crack under dynamic transverse shear load is considered. The length L, width W, and thickness h of the square plate are 2.0, 2.0, and 0.1 m, respectively. The half crack length a is set to 0.1 m. The square plate is subjected to a transverse shear force of \(QH(t)=1.0\) MPa on the right edge with clamped BCs imposed on the left edge (see Fig. 18). Young’s modulus E, Poisson’s ratio \(\nu \), and density \(\rho \) are set to 200 GPa, 0.3, and 7850 kg/\(\mathrm {m}^3\), respectively.

As illustrated in Fig. 19a, b, the displacement nearby the crack tip and dynamic \(F_1\) results are in good agreement between the PD and FEM solutions. It demonstrates that the proposed nonlocal method can well simulate fracture behaviors under different types of boundary conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, M.J., Tanaka, S., Oterkus, S. et al. Static and dynamic mechanical behaviors of cracked Mindlin plates in ordinary state-based peridynamic framework. Acta Mech 233, 299–316 (2022). https://doi.org/10.1007/s00707-021-03127-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03127-w

Navigation