Skip to main content
Log in

Detection of different dynamics of two coupled oscillators including a time-dependent cubic nonlinearity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Vibratory energy channelling between a linear and a nonlinear oscillator is studied at different time scales. The nonlinear system possesses a time-dependent periodic restoring forcing function. Detection of fast and slow system dynamics leads to revealing different dynamical characteristics, namely slow invariant manifold, equilibrium and singular points. We show that the time-dependent nonlinearity produces a phase-dependent slow invariant manifold, frequency responses, and modifications concerning stability borders of its slow invariant manifold and singularities zones. The backbone curves of the system and also isola are detected; the latter should be taken into account carefully if the aim is system control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., Yao, J.T.P.: Structural control: past, present and future. J. Eng. Mech. 123, 897–971 (1997)

    Article  Google Scholar 

  2. Korkmaz, S.: A review of active structural control: challenges for engineering informatics. Comput. Struct. 89, 2113–2132 (2011)

    Article  Google Scholar 

  3. Chu, S.Y., Soong, T.T., Reinhorn, A.M.: Active, Hybrid, and Semi-active Structural Control: A Design and Implementation Handbook. Wiley, United Kingdoms (2005)

    Google Scholar 

  4. Liu, Y., Waters, T.P., Brennan, M.J.: A comparison of semi-active damping control strategies for vibration isolation of harmonic disturbances. J. Sound Vib. 280(1), 21–39 (2005)

    Article  MathSciNet  Google Scholar 

  5. Liu, Y., Matsuhisa, H., Utsuno, H.: Semi-active vibration isolation system with variable stiffness and damping control. J. Sound Vib. 313(1), 16–28 (2008)

    Article  Google Scholar 

  6. Moheimani, S.R., Fleming, A.J.: Piezoelectric transducers for vibration control and damping. Springer Science & Business Media, Berlin (2006)

    MATH  Google Scholar 

  7. Guyomar, D., Badel, A.: Nonlinear semi-passive multimodal vibration damping: an efficient probabilistic approach. J. Sound Vib. 294(1–2), 249–268 (2006)

    Article  Google Scholar 

  8. Guyomar, D., Richard, C., Mohammadi, S.: Semi-passive random vibration control based on statistics. J. Sound Vib. 307(3–5), 818–833 (2007)

    Article  Google Scholar 

  9. Mohammadi, S.: Semi-passive vibration control using shunted piezoelectric materials. PhD thesis, Electronic, Electrotechnic and Automatic (EEA), INSA-Lyon, Lyon, n\(^\circ \) 2008-ISAL-0043, (2008)

  10. Guillot, V., Givois, A., Colin, M., Thomas, O., Savadkoohi, A.T., Lamarque, C.-H.: Theoretical and experimental investigation of a 1:3 internal resonance in a beam with piezoelectric patches. J. Vib. Control 26(13–14), 1119–1132 (2020)

  11. Guillot, V., Savadkoohi, A.T., Lamarque, C.-H.: Study of an electromechanical nonlinear vibration absorber: design via analytical approach. J. Intell. Mater. Syst. Struct. 32(4), 410–419 (2021)

  12. Frahm, H.: Device for damping vibrations of bodies. US Patent 989,958, (1911)

  13. Roberson, R.E.: Synthesis of a nonlinear dynamic vibration absorber. J. Franklin Inst. 254(3), 205–220 (1952)

    Article  MathSciNet  Google Scholar 

  14. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear targeted energy transfer in mechanical and structural systems. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  15. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dyn. 51(1), 31–46 (2008)

    MATH  Google Scholar 

  16. Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’closkey, R.: Energy pumping in nonlinear mechanical oscillators: part I-dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68(1), 34–41 (2001)

  17. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: part II-resonance capture. J. Appl. Mech. 68(1), 42–48 (2001)

    Article  MathSciNet  Google Scholar 

  18. Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50(3), 651–677 (2007)

    Article  Google Scholar 

  19. Gendelman, O.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331, 4599–4608 (2012)

    Article  Google Scholar 

  20. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: Analytical and experimental developments. J. Vib. Acoust., 137(3), (2015)

  21. Lamarque, C.-H., Gendelman, O.V., Savadkoohi, A.T., Etcheverria, E.: Structural control by means of non-smooth nonlinear energy sink. In: 7th European Nonlinear Dynamics Conference (ENOC 2011), (2011)

  22. Weiss, M., Vaurigaud, B., Savadkoohi, A.T., Lamarque, C.-H.: Control of vertical oscillations of a cable by a piecewise linear absorber. J. Sound Vib. 435, 281–300 (2018)

  23. Hurel, G., Savadkoohi, A.T., Lamarque, C.-H.: Design of a nonlinear absorber for a 2 degrees of freedom pendulum and experimental validation. Struct. Control. Health Monit. 28(11), e2814 (2021)

  24. Savadkoohi, A.T., Lamarque, C.-H., Contessa, M.V.: Trapping vibratory energy of main linear structures by coupling light systems with geometrical and material non-linearities. Int. J. Non-Linear Mech. 80, 3–13 (2016)

  25. Lamarque, C.-H., Savadkoohi, A.T., Dimitrijevic, Z.: Dynamics of a linear system with time-dependent mass and a coupled light mass with non-smooth potential. Meccanica 49(1), 135–145 (2014)

  26. Lamarque, C.-H., Savadkoohi, A.T.: Dynamical behavior of a Bouc-Wen type oscillator coupled to a nonlinear energy sink. Meccanica 49(8), 1917–1928 (2014)

  27. Cochelin, B., Herzog, P., Mattei, P.-O.: Experimental evidence of energy pumping in acoustics. Comptes Rendus Mécanique 334(11), 639–644 (2006)

    Article  Google Scholar 

  28. Bellet, R., Cochelin, B., Herzog, P., Mattei, P.-O.: Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber. J. Sound Vib. 329(14), 2768–2791 (2010)

    Article  Google Scholar 

  29. Vargas, V.A., Gourdon, E., Savadkoohi, A.T.: Nonlinear softening and hardening behavior in Helmholtz resonators for nonlinear regimes. Nonlinear Dyn. 91(1), 217–231 (2018)

  30. Gourdon, E., Savadkoohi, A.T., Vargas, V.A.: Targeted energy transfer from one acoustical mode to an Helmholtz resonator with nonlinear behavior. J. Vib. Acoust., 140(6): 061005 (8), (2018)

  31. Volpe, M., Bellizzi, S., Côte, R.: Polyharmonic distortion approach for nonlinear acoustic load characterization. J. Sound Vib., 116426, (2021)

  32. Guo, X., Lissek, H., Fleury, R.: Improving sound absorption through nonlinear active electroacoustic resonators. Phys. Rev. Appl. 13, 014018 (2020)

    Article  Google Scholar 

  33. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. Wiley Classics Library, (1995)

  34. Charlemagne, S., Savadkoohi, A.T., Lamarque, C.-H.: Interactions between two coupled nonlinear forced systems: fast/slow dynamics. Int. J. Bifurcat. Chaos 26(09), 1650155 (2016)

  35. Manevitch, L.I.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95–109 (2001)

    Article  MathSciNet  Google Scholar 

  36. Smirnov, V.V., Manevitch, L.I.: Complex envelope variable approximation in nonlinear dynamics. Russian J. Nonlinear Dyn. 16(3), 491–515 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Manevitch, L.I., Gendelman, O.V.: Tractable Models of Solid Mechanics. Foundations of Engineering Mechanics. Springer-Verlag, Berlin (2011)

    Book  Google Scholar 

  38. Savadkoohi, A.T., Lamarque, C.-H., Weiss, M., Vaurigaud, B., Charlemagne, S.: Analysis of the 1:1 resonant energy exchanges between coupled oscillators with rheologies. Nonlinear Dyn. 86(4), 2145–2159 (2016)

  39. Luongo, A., Zulli, D., Piccardo, G.: Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. J. Sound Vib. 315(3), 375–393 (2008)

    Article  Google Scholar 

  40. Awrejcewicz, J., Starosta, R., Sypniewska-Kamińska, G.: Asymptotic analysis of resonances in nonlinear vibrations of the 3-dof pendulum. Diff. Eq. Dynam. Syst. 21(1), 123–140 (2013)

    Article  MathSciNet  Google Scholar 

  41. Starosta, R., Sypniewska-Kamińska, G., Awrejcewicz, J.: Quantifying non-linear dynamics of mass-springs in series oscillators via asymptotic approach. Mech. Syst. Signal Process. 89, 149–158 (2017)

    Article  Google Scholar 

  42. Bertrand, C., Savadkoohi, A.T., Lamarque, C.-H.: Nonlinear oscillations of a pendulum cable with the effects of the friction and the radius of the support. Nonlinear Dyn. 96(2), 1303–1315 (2019)

  43. Awrejcewicz, J., Starosta, R., Sypniewska-Kamińska, G.: Complexity of resonances exhibited by a nonlinear micromechanical gyroscope: an analytical study. Nonlinear Dyn. 97(3), 1819–1836 (2019)

    Article  Google Scholar 

  44. Guillot, V., Savadkoohi, A.T., Lamarque, C.-H.: Analysis of a reduced-order nonlinear model of a multi-physics beam. Nonlinear Dyn. 97(2), 1371–1401 (2019)

  45. Awrejcewicz, J., Starosta, R., Sypniewska-Kamińska, G.: Nonlinear vibration of a lumped system with springs-in-series. Meccanica 56(4), 753–767 (2021)

    Article  MathSciNet  Google Scholar 

  46. Casalotti, A., Zulli, D., Luongo, A.: Dynamic response to transverse loading of a single-layered tubular beam via a perturbation approach. Int. J. Non-Linear Mech. 137, 103822 (2021)

    Article  Google Scholar 

  47. Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.-H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results. J. Sound Vib. 300(3), 522–551 (2007)

    Article  Google Scholar 

  48. Savadkoohi, A.T., Vaurigaud, B., Lamarque, C.-H., Pernot, S.: Targeted energy transfer with parallel nonlinear energy sinks, part II: theory and experiments. Nonlinear Dyn. 67(1), 37–46 (2012)

  49. Wierschem, N.E., Hubbard, S.A., Luo, J., Fahnestock, L.A., Spencer, B.F., McFarland, D.M., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers. J. Sound Vib. 389, 52–72 (2017)

    Article  Google Scholar 

  50. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Suppression aeroelastic instability using broadband passive targeted energy transfers, part I: Theory. AIAA J. 45(3), 693–711 (2007)

    Article  Google Scholar 

  51. Lee, Y.S., Kerschen, G., McFarland, D.M., Hill, W.J., Nichkawde, C., Strganac, T.W., Bergman, L.A., Vakakis, A.F.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, part II: experiments. AIAA J. 45(10), 2391–2400 (2007)

    Article  Google Scholar 

  52. Gendelman, O.V., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow. SIAM J. Appl. Math. 70(5), 1655–1677 (2010)

    Article  MathSciNet  Google Scholar 

  53. Vaurigaud, B., Manevitch, L.I., Lamarque, C.-H.: Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer. J. Sound Vib. 330(11), 2580–2595 (2011)

    Article  Google Scholar 

  54. Luongo, A., Zulli, D.: Aeroelastic instability analysis of NES-controlled systems via a mixed multiple scale/harmonic balance method. J. Vib. Control 20(13), 1985–1998 (2014)

    Article  Google Scholar 

  55. Lamarque, C.-H., Gendelman, O.V., Savadkoohi, A.T., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221(1), 175–200 (2011)

  56. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry. Physica D 237(13), 1719–1733 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following organizations for supporting this research: (i) The “Ministère de la transition écologique” and (ii) LABEX CELYA (ANR-10-LABX-0060) of the “Université de Lyon” within the program “Investissement d’Avenir”(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Labetoulle.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Treatment of \({\mathcal {E}}=0\)

$$\begin{aligned} {\mathcal {E}}= 0 \Rightarrow if_0 + [i(2\sigma - \gamma _0) +\xi _1]\phi _1 +i\gamma _0\phi _2 =0. \end{aligned}$$
(61)

Let us insert Eq. (22) in Eq. (61),

$$\begin{aligned}&if_0 + [i(2\sigma - \gamma _0) +\xi _1] \frac{\phi _2}{\gamma _0}\left[ -1+i\xi _2 + \gamma _0 + \frac{3}{4}k_0 |\phi _2 |^2 \right] +i\gamma _0\phi _2 =0, \end{aligned}$$
(62)
$$\begin{aligned}&if_0 + [i(2\sigma - \gamma _0) +\xi _1] \frac{N_2e^{i\delta _2}}{\gamma _0}\left[ -1+i\xi _2 + \gamma _0 + \frac{3}{4}k_0 N_2^2\right] +i\gamma _0N_2e^{i\delta _2} =0, \end{aligned}$$
(63)
$$\begin{aligned}&if_0 + \frac{N_2(\cos (\delta _2)+i\sin (\delta _2))}{\gamma _0} \left[ -\xi _2(2\sigma - \gamma _0) + i\left( 2\sigma - \gamma _0\right) \left( -1+\gamma _0+\frac{3}{4}k_0N_2^2\right) \right. \nonumber \\&\quad \left. + i\xi _1\xi _2 + \xi _1\left( -1+\gamma _0+\frac{3}{4}k_0N_2^2\right) \right] +i\gamma _0 N_2(\cos (\delta _2)+i\sin (\delta _2)) =0.\nonumber \\ \end{aligned}$$
(64)

Real part:

$$\begin{aligned}&\cos (\delta _2)\underbrace{\left[ -\xi _2(2\sigma - \gamma _0) +\xi _1\left( -1+\gamma _0+\frac{3}{4}k_0N_2^2\right) \right] }_{A_{11}} - \sin (\delta _2)\underbrace{\left[ \left( 2\sigma - \gamma _0\right) \left( -1+\gamma _0+\frac{3}{4}k_0N_2^2\right) +\xi _1\xi _2+\gamma _0^2 \right] }_{A_{12}}\nonumber \\&\qquad =0. \end{aligned}$$
(65)

Imaginary part:

$$\begin{aligned}&\cos (\delta _2)\underbrace{\left[ \left( 2\sigma - \gamma _0\right) \left( -1+\gamma _0+\frac{3}{4}k_0N_2^2\right) +\xi _1\xi _2+ \gamma _0^2 \right] }_{A_{12}}\nonumber \\&\quad +\sin (\delta _2)\underbrace{\left[ -\xi _2(2\sigma - \gamma _0) +\xi _1\left( -1+\gamma _0+\frac{3}{4}k_0N_2^2\right) \right] }_{A_{11}}=\underbrace{-\frac{f_0\gamma _0}{N_2}}_{C_2}, \end{aligned}$$
(66)
$$\begin{aligned}&\left\{ \begin{array}{l} A_{11}\cos (\delta _2) -A_{12}\sin (\delta _2)=0\\ A_{12}\cos (\delta _2) +A_{11}\sin (\delta _2)=C_2 \end{array} \right. , \end{aligned}$$
(67)
$$\begin{aligned}&A_{11}^2+A_{12}^2 = C_2^2, \end{aligned}$$
(68)
$$\begin{aligned}&\xi _2^2(2\sigma -\gamma _0)^2-2\xi _2\xi _1(2\sigma -\gamma _0)\left( -1+\gamma _0+\frac{3}{4}k_0N_2^2\right) +\xi _1^2\left( -1+\gamma _0+\frac{3}{4}k_0N_2^2\right) ^2\nonumber \\&\quad +\left( 2\sigma -\gamma _0\right) ^2\left( -1+\gamma _0+\frac{3}{4}k_0N_2^2\right) ^2\nonumber \\&\quad +2\left( 2\sigma -\gamma _0\right) \left( -1+\gamma _0+\frac{3}{4}k_0N_2^2\right) \left( \xi _1\xi _2+\gamma _0^2\right) +\left( \xi _1\xi _2+\gamma _0^2\right) ^2 =\frac{f_0^2\gamma _0^2}{N_2^2}. \end{aligned}$$
(69)

Let us consider \(X=N_2^2\):

$$\begin{aligned}&X^3\left( \frac{3}{4}k_0\right) ^2\left[ \xi _1^2 +(2\sigma -\gamma _0)^2\right] +X^2\frac{3}{2}k_0\left[ (-1+\gamma _0)\left[ \xi _1^2 +(2\sigma _-\gamma _0)^2 \right] + (2\sigma -\gamma _0)\gamma _0^2 \right] ,\nonumber \\&\qquad +X\left[ (-1+\gamma _0)^2\left[ \xi _1^2+2(\sigma -\gamma _0)^2 \right] + 2(-1+\gamma _0)(2\sigma -\gamma _0)\gamma _0^2\right. \nonumber \\&\qquad \left. + \left( \xi _1\xi _2+\gamma _0^2\right) ^2 +(2\sigma -\gamma _0)^2\xi _2^2\right] =f_0^2\gamma _0^2,\nonumber \\ \end{aligned}$$
(70)
$$\begin{aligned}&aX^3+bX^2+cX+d=0. \end{aligned}$$
(71)

Development of fast dynamics for the system with time-dependent nonlinearity

$$\begin{aligned} \gamma _0N_1e^{i\delta _1}&=\left( -1+\gamma _0+i\xi _2\right) N_2e^{i\delta _2}\nonumber \\&\quad -\frac{N_2^3}{4} \left( e^{3i\delta _2}\left( K_{2R}-iK_{2I}\right) \right. \left. +3 \left[ -K_{0}e^{i\delta _2}+\left( K_{2R}+iK_{2I}\right) e^{-i\delta _2} \right] -\left( K_{4R}+iK_{4I}\right) e^{-i3\delta _2}\right) .\nonumber \\ \end{aligned}$$
(72)

Real part:

$$\begin{aligned} \gamma _0\frac{N_1}{N_2}\cos (\delta _1-\delta _2)= \underbrace{\left( -1+\gamma _0\right) - \frac{N_2^2}{4} \left( 4K_{2R}\cos (2\delta _2)+4K_{2I}\sin (2\delta _2) \right. \left. -3K_{0}-K_{4R}\cos (4\delta _2)-K_{4I}\sin (4\delta _2)\right) }_{A}.\nonumber \\ \end{aligned}$$
(73)

Imaginary part:

$$\begin{aligned} \gamma _0\frac{N_1}{N_2}\sin (\delta _1-\delta _2)= \underbrace{\xi _2 - \frac{N_2^2}{4} \left( -2K_{2R}\sin (2\delta _2)+2K_{2I}\cos (2\delta _2) +K_{4R}\sin (4\delta _2)-K_{4I}\cos (4\delta _2)\right) }_{B}.\nonumber \\ \end{aligned}$$
(74)

So,

$$\begin{aligned} N_1&=\frac{N_2}{\gamma _0}\sqrt{A^2+B^2}, \end{aligned}$$
(75)
$$\begin{aligned} A^2+B^2&= \frac{1}{16}\left[ 16\xi _2^2+\left( -8 K_{4R}N_{2}^2\sin \left( 4\delta _{2}\right) +8 K_{4I}N_{2}^2\cos \left( 4\delta _{2}\right) \right. \right. \left. \left. +16K_{2R}N_{2}^2\sin \left( 2\delta _{2}\right) \right. \right. \nonumber \\&\quad \left. -16 K_{2I} N_{2}^2\cos \left( 2\delta _{2}\right) \right) \xi _2+\left( \left( -4K_{2R} K_{4R} -8 K_{2I} K_{4I}\right) N_{2}^4\sin \left( 2\delta _{2}\right) \right. \nonumber \\&\quad \left. \left. +\left( 4 K_{2I} K_{4R}-8K_{2R} K_{4I}\right) N_{2}^4\cos \left( 2\delta _{2}\right) \right. \right. \left. \left. +6K_{0} K_{4I}N_{2}^4\right. \right. \nonumber \\&\quad \left. +\left( 8 K_{4I}\gamma _{0}-8 K_{4I}\right) N_{2}^2\right) \sin \left( 4\delta _{2}\right) +\left( \left( 4 K_{2R} K_{4I} \right. \right. \nonumber \\&\quad \left. \left. \left. -8 K_{2I} K_{4R}\right) N_{2}^4\sin \left( 2\delta _{2}\right) +\left( -8 K_{2R}K_{4R}-4 K_{2I} K_{4I}\right) N_{2}^4\cos \left( 2 \delta _{2}\right) +6K_{0} K_{4R}N_{2}^4\right. \right. \nonumber \\&\quad \left. +\left( 8 K_{4R}\gamma _{0}-8 K_{4R}\right) N_{2}^2\right) \cos \left( 4\delta _{2}\right) \nonumber \\&\quad \left. +\left( 24 K_{2I} K_{2R}N_{2}^4\cos \left( 2\delta _{2}\right) -24K_{0} K_{2I}N_{2}^4+\left( 32K_{2I}-32 K_{2I}\gamma _{0}\right) N_{2}^2\right) \sin \left( 2\delta _{2}\right) \right. \nonumber \\&\quad \left. +\left( 12 K_{2R}^2 -12 K_{2I}^2 \right) N_{2}^4\cos ^2\left( 2\delta _{2}\right) +\left( \left( 32K_{2R}-32 K_{2R}\gamma _{0}\right) N_{2}^2 \right. \right. \nonumber \\&\quad \left. \left. -24K_{0}K_{2R}N_{2}^4\right) \cos \left( 2\delta _{2}\right) +\left( K_{4R}^2+ K_{4I}^2+4 K_{2R}^2+16K_{2I}^2+9K_{0}^2\right) N_{2}^4\right. \nonumber \\&\quad \left. +\left( 24K_{0}\gamma _{0}-24K_{0}\right) N_{2}^2+16\gamma _{0}^2-32\gamma _{0}+16\right] . \end{aligned}$$
(76)

Extrema of the SIM for the system with time-dependent nonlinearity

$$\begin{aligned} \frac{\partial N_1^2}{\partial N_2}&= \frac{-1}{8\gamma _{0}^2}\left[ \left( \left( 12 K_{2R} K_{4R}+24 K_{2I} K_{4I}\right) N_{2}^5\sin \left( 2\delta _{2}\right) \right. \right. \nonumber \\&\quad +\left( 24 K_{2R} K_{4I} -12 K_{2I} K_{4R}\right) N_{2}^5\cos \left( 2\delta _{2}\right) -18K_{0} K_{4I}N_{2}^5 \nonumber \\&\quad \left. \left. +\left( 16 K_{4R}\xi _{2} +\left( 16 -16\gamma _{0}\right) K_{4I}\right) N_{2}^3\right) \sin \left( 4\delta _{2}\right) +\left( \left( 24 K_{2I} K_{4R}-12 K_{2R} K_{4I}\right) N_{2}^5\sin \left( 2\delta _{2}\right) \right. \right. \nonumber \\&\quad \left. \left. +\left( 24 K_{2R} K_{4R}+12 K_{2I} K_{4I}\right) N_{2}^5\cos \left( 2\delta _{2}\right) -18K_{0} K_{4R}N_{2}^5+\left( \left( 16 -16\gamma _{0}\right) K_{4R}-16 K_{4I}\xi _{2}\right) N_{2}^3\right) \cos \left( 4\delta _{2}\right) \right. \nonumber \\&\quad \left. +\left( -72 K_{2I} K_{2R}N_{2}^5\cos \left( 2\delta _{2}\right) +72K_{0} K_{2I}N_{2}^5+\left( \left( 64\gamma _{0}-64\right) K_{2I}-32 K_{2R}\xi _{2}\right) N_{2}^3\right) \sin \left( 2\delta _{2}\right) +\left( 36 K_{2I}^2 \right. \right. \nonumber \\&\quad \left. \left. -36 K_{2R}^2\right) N_{2}^5\cos ^2\left( 2\delta _{2}\right) +\left( 72K_{0} K_{2R}N_{2}^5+\left( 32 K_{2I}\xi _{2}+\left( 64\gamma _{0} -64\right) K_{2R}\right) N_{2}^3\right) \cos \left( 2\delta _{2}\right) \right. \nonumber \\&\quad \left. +\left( -3 K_{4R}^2-3 K_{4I}^2-12 K_{2R}^2-48 K_{2I}^2 -27K_{0}^2\right) N_{2}^5\right. \nonumber \\&\quad \left. +\left( 48-48\gamma _{0}\right) K_{0}N_{2}^3+\left( -16\xi _{2}^2-16\gamma _{0}^2+32\gamma _{0}-16\right) N_{2}\right] =0, \end{aligned}$$
(77)
$$\begin{aligned}&\frac{\partial N_1^2}{\partial \delta _2} = \frac{1}{2 \gamma _{0}^2}\left[ \left( 3 K_{2I} K_{4R}N_{2}^6\sin \left( 2\delta _{2}\right) +3 K_{2R} K_{4R}N_{2}^6\cos \left( 2\delta _{2} \right) -3K_{0} K_{4R}N_{2}^6\right. \right. \nonumber \\&\quad \left. +\left( \left( 4-4\gamma _{0}\right) K_{4R}-4 K_{4I}\xi _{2}\right) N_{2}^4\right) \sin \left( 4\delta _{2}\right) \nonumber \\&\quad \left. +\left( -3 K_{2I} K_{4I} N_{2}^6\sin \left( 2\delta _{2}\right) -3 K_{2R} K_{4I}N_{2}^6\cos \left( 2\delta _{2}\right) +3K_{0} K_{4I}N_{2}^6 \right. \right. \nonumber \\&\quad \left. +\left( \left( 4\gamma _{0}-4\right) K_{4I}-4 K_{4R}\xi _{2}\right) N_{2}^4\right) \cos \left( 4\delta _{2}\right) +\left( \left( 6 K_{2I}^2 \right. \right. \nonumber \\&\quad \left. \left. \left. -6 K_{2R}^2\right) N_{2}^6\cos \left( 2\delta _{2}\right) +6K_{0} K_{2R}N_{2}^6+\left( 4 K_{2I}\xi _{2}+\left( 8\gamma _{0} -8\right) K_{2R}\right) N_{2}^4\right) \sin \left( 2\delta _{2}\right) \right. \nonumber \\&\quad \left. +12 K_{2I} K_{2R}N_{2}^6\cos ^2\left( 2\delta _{2}\right) \right. \nonumber \\&\quad \left. +\left( \left( 4 K_{2R}\xi _{2}+\left( 8 -8\gamma _{0}\right) K_{2I}\right) N_{2}^4-6K_{0} K_{2I}N_{2}^6\right) \cos \left( 2 \delta _{2}\right) -6 K_{2I} K_{2R}N_{2}^6\right] =0. \end{aligned}$$
(78)

Equations (77) and (78) read as polynomials of \( N_2 \):

$$\begin{aligned}&\frac{N_2}{8 \gamma _0^2}\left( 16-32\gamma _0+16\gamma _0^2+16\xi _2^2\right) + \frac{N_2^3}{8 \gamma _0^2}\left( 48K_0\left( -1+\gamma _0\right) + 64 K_{2R} \cos (2\delta _2) \right. \nonumber \\&\quad -64K_{2R}\gamma _0\cos (2\delta _2) - 32 K_{2I} \xi _2 \cos (2\delta _2) - 16 K_{4R} \cos (4\delta _2)+ 16 K_{4R} \gamma _0 \cos (4\delta _2) \nonumber \\&\quad \left. + 16 K_{4I} \xi _2 \cos (4\delta _2)+ 64 K_{2I} \sin (2\delta _2) - 64 K_{2I} \gamma _0 \sin (2\delta _2) \right. \nonumber \\&\quad \left. + 32 K_{2R} \xi _2 \sin (2\delta _2)- 16 K_{4I} \sin (4\delta _2) + 16 K_{4I} \gamma _0 \sin (4\delta _2) - 16 K_{4R} \xi _2 \sin (4\delta _2) \right) \nonumber \\&\quad + \frac{N_2^5}{8 \gamma _0^2}\left( 27 K_0^2 + 30 K_{2I}^2 + 30 K_{2R}^2 + 3 K_{4I}^2 + 3 K_{4R}^2 - 72 K_0 K_{2R} \cos (2\delta _2)-18 K_{2I} K_{4I} \cos (2\delta _2) \right. \nonumber \\&\quad \left. - 18 K_{2R} K_{4R} \cos (2\delta _2) - 18 K_{2I}^2 \cos (4\delta _2) + 18 K_{2R}^2 \cos (4\delta _2) +18 K_0 K_{4R} \cos (4\delta _2) + 6 K_{2I} K_{4I} \cos (6\delta _2) \right. \nonumber \\&\quad \left. - 6 K_{2R} K_{4R} \cos (6\delta _2) - 72 K_0 K_{2I} \sin (2\delta _2) -18 K_{2R} K_{4I} \sin (2\delta _2) + 18 K_{2I} K_{4R} \sin (2\delta _2)\right. \nonumber \\&\quad \left. + 36 K_{2I} K_{2R} \sin (4\delta _2) + 18 K_0 K_{4I} \sin (4\delta _2) - 6 K_{2R} K_{4I} \sin (6\delta _2) - 6 K_{2I} K_{4R} \sin (6\delta _2) \right) =0, \end{aligned}$$
(79)
$$\begin{aligned}&\frac{N_2^4}{8\gamma _0^2} \left( -32 K_{2I} \left( -1 + \gamma _0\right) \cos (2\delta _2) + 16 K_{2R} \xi _2 \cos (2\delta _2) - 16 K_{4I} \cos (4\delta _2)\right. \nonumber \\&\quad + 16 K_{4I} \gamma _0 \cos (4\delta _2) - 16 K_{4R} \xi _2 \cos (4\delta _2) \nonumber \\&\quad \left. + 32 K_{2R} \left( -1 + \gamma _0 \right) \sin (2\delta _2) +16 K_{2I} \xi _2 \sin (2\delta _2) + 16 K_{4R}\sin (4\delta _2) - 16 K_{4R} \gamma _0\sin (4\delta _2) - 16 K_{4I} \xi _2 \sin (4\delta _2)\right) \nonumber \\&\quad + \frac{N_2^6}{8\gamma _0^2} \left( -6 K_{2R} K_{4I}\cos (2\delta _2) + 6 K_{2I} \left( -4 K_{0} + K_{4R}\right) \cos (2\delta _2) + 24 K_{2I} K_{2R}\cos (4\delta _2) + 12 K_{0} K_{4I}\cos (4\delta _2) \right. \nonumber \\&\quad \left. -6 \left( K_{2R} K_{4I} + K_{2I} K_{4R}\right) \cos (6\delta _2) + 6 K_{2I} K_{4I}\sin (2\delta _2) + 6 K_{2R} \left( 4 K_{0} + K_{4R}\right) \sin (2\delta _2) \right. \nonumber \\&\quad \left. + 12 \left( K_{2I} - K_{2R}\right) \left( K_{2I} + K_{2R}\right) \sin (4\delta _2) - 12 K_{0} K_{4R}\sin (4\delta _2) - 6 \left( K_{2I} K_{4I} - K_{2R} K_{4R}\right) \sin (6\delta _2)\right) =0. \end{aligned}$$
(80)

Setting \(X=N_2^2\), then Eq. (79) can be written simplified:

$$\begin{aligned} \frac{\partial N_1^2}{\partial N_2} =0 \Rightarrow \alpha _4 X^2 + \alpha _2 X + \alpha _0 =0 \end{aligned}$$
(81)

with

$$\begin{aligned} \alpha _0&=16(1-2\gamma _0+\gamma _0^2+\xi _2^2), \end{aligned}$$
(82)
$$\begin{aligned} \alpha _2&=48K_0\left( -1+\gamma _0\right) + 64 K_{2R} \cos (2\delta _2) -64K_{2R}\gamma _0\cos (2\delta _2) - 32 K_{2I} \xi _2 \cos (2\delta _2) \nonumber \\&\quad - 16 K_{4R} \cos (4\delta _2) + 16 K_{4R} \gamma _0 \cos (4\delta _2) \nonumber \\&\quad + 16 K_{4I} \xi _2 \cos (4\delta _2)+ 64 K_{2I} \sin (2\delta _2) - 64 K_{2I} \gamma _0 \sin (2\delta _2) + 32 K_{2R} \xi _2 \sin (2\delta _2) \nonumber \\&\quad - 16 K_{4I} \sin (4\delta _2) + 16 K_{4I} \gamma _0 \sin (4\delta _2) - 16 K_{4R} \xi _2 \sin (4\delta _2), \end{aligned}$$
(83)
$$\begin{aligned} \alpha _4&= 27 K_0^2 + 30 K_{2I}^2 + 30 K_{2R}^2 + 3 K_{4I}^2 + 3 K_{4R}^2 - 72 K_0 K_{2R} \cos (2\delta _2) \nonumber \\&\quad -18 K_{2I} K_{4I} \cos (2\delta _2) - 18 K_{2R} K_{4R} \cos (2\delta _2)\nonumber \\&\quad - 18 K_{2I}^2 \cos (4\delta _2) + 18 K_{2R}^2 \cos (4\delta _2) +18 K_0 K_{4R} \cos (4\delta _2) \nonumber \\&\quad + 6 K_{2I} K_{4I} \cos (6\delta _2) - 6 K_{2R} K_{4R} \cos (6\delta _2) \nonumber \\&\quad - 72 K_0 K_{2I} \sin (2\delta _2) -18 K_{2R} K_{4I} \sin (2\delta _2) + 18 K_{2I} K_{4R} \sin (2\delta _2) \nonumber \\&\quad + 36 K_{2I} K_{2R} \sin (4\delta _2) + 18 K_0 K_{4I} \sin (4\delta _2) \nonumber \\&\quad - 6 K_{2R} K_{4I} \sin (6\delta _2) - 6 K_{2I} K_{4R} \sin (6\delta _2). \end{aligned}$$
(84)

Equation (80) can be written as:

$$\begin{aligned} \frac{\partial N_1^2}{\partial \delta _2} =0 \Rightarrow \beta _2 X + \beta _0 =0 \end{aligned}$$
(85)

with

$$\begin{aligned} \beta _0&= -32 K_{2I} \left( -1 + \gamma _0\right) \cos (2\delta _2) + 16 K_{2R} \xi _2 \cos (2\delta _2) - 16 K_{4I} \cos (4\delta _2) \nonumber \\&\quad + 16 K_{4I} \gamma _0 \cos (4\delta _2) - 16 K_{4R} \xi _2 \cos (4\delta _2) \nonumber \\&\quad + 32 K_{2R} \left( -1 + \gamma _0 \right) \sin (2\delta _2) +16 K_{2I} \xi _2 \sin (2\delta _2) + 16 K_{4R}\sin (4\delta _2)\nonumber \\&\quad - 16 K_{4R} \gamma _0\sin (4\delta _2) - 16 K_{4I} \xi _2 \sin (4\delta _2), \end{aligned}$$
(86)
$$\begin{aligned} \beta _2&=-6 K_{2R} K_{4I}\cos (2\delta _2) + 6 K_{2I} \left( -4 K_{0} + K_{4R}\right) \cos (2\delta _2) + 24 K_{2I} K_{2R}\cos (4\delta _2) + 12 K_{0} K_{4I}\cos (4\delta _2) \nonumber \\&\quad -6 \left( K_{2R} K_{4I} + K_{2I} K_{4R}\right) \cos (6\delta _2) + 6 K_{2I} K_{4I}\sin (2\delta _2) + 6 K_{2R} \left( 4 K_{0} + K_{4R}\right) \sin (2\delta _2) \nonumber \\&\quad + 12 \left( K_{2I} - K_{2R}\right) \left( K_{2I} + K_{2R}\right) \sin (4\delta _2) - 12 K_{0} K_{4R}\sin (4\delta _2) - 6 \left( K_{2I} K_{4I} - K_{2R} K_{4R}\right) \sin (6\delta _2).\nonumber \\ \end{aligned}$$
(87)

Development of the unstable zone of the SIM of the system with time-dependent nonlinearity

$$\begin{aligned} a_v&=\frac{9}{64}(3K_0^2-2K_{2I}^2-2K_{2R}^2-K_{4I}^2-K_{4R}^2+ 4(-K_0K_{2R}+K_{2I}K_{4I}+K_{2R}K_{4R})\cos (2\delta _2)\nonumber \\&\quad -2(K_{2I}^2- K_{2R}^2+K_0K_{4R})\cos (4\delta _2) -4(-K_{2R}K_{4I}+K_{2I}(K_0+K_{4R})) \sin (2\delta _2)\nonumber \\&\quad +2(2K_{2I}K_{2R}-K_0K_{4I})\sin (4\delta _2)), \end{aligned}$$
(88)
$$\begin{aligned} b_v&=\frac{3}{4}\left( -1+\gamma _0\right) \left( K_0-K_{2R}\cos (2\delta _2)-K_{2I}\sin (2 \delta _2)\right) , \end{aligned}$$
(89)
$$\begin{aligned} c_v&=\frac{1}{4}((-1+\gamma _0)^2+\xi 2^2). \end{aligned}$$
(90)

Development of \(\det ( {\mathbb {A}})\) (singular points of the system with time-dependent nonlinearity)

$$\begin{aligned} \det ({\mathbb {A}})&= \frac{\partial {{\mathscr {H}}}}{\partial \phi _2}\frac{\partial {{\mathscr {H}}}^*}{\partial \phi _2^*}-\frac{\partial {{\mathscr {H}}}^*}{\partial \phi _2}\frac{\partial {{\mathscr {H}}}}{\partial \phi _2^*}, \end{aligned}$$
(91)
$$\begin{aligned} \det ({\mathbb {A}})&= \frac{1}{4}\left[ \xi _2^2 + \left( -1+\gamma _0 -\frac{3}{4} \left( \phi _2^2K_2^*-2|\phi _2 |^2 K_0+\phi _2^{*2}k_2\right) \right) ^2 - \left( \frac{3}{4}\right) ^2\left( |\phi _2 |^4 - 2|\phi _2 |^2\phi _2^{*2}K_0K_2 \right. \right. \nonumber \\&\quad \left. \left. +\phi _2^{*4}K_0K_4-2|\phi _2 |^2\phi _2^2K_0K_2^*+4|\phi _2 |^4|K_2 |^2 \right. \right. \nonumber \\&\quad \left. \left. -2|\phi _2 |^2 \phi _2^{*2}K_2^*K_4+\phi _2^4K_0K_4^*-2|\phi _2 |^2\phi _2^2K_2K_4^*+|\phi _2 |^4|K_4 |^2 \right) \right] , \end{aligned}$$
(92)
$$\begin{aligned} \det ({\mathbb {A}})&=\frac{1}{4} \left[ \xi _2^2 + \left( -1+\gamma _0\right) ^2 - 3\left( -1+\gamma _0\right) N_2^2\left( K_{2R}\cos (2\delta _2) + K_{2I}\sin (2\delta _2)-K_0\right) \right. \nonumber \\&\quad +\frac{9}{4}N_2^4\left( K_{2R}\cos (2\delta _2) + K_{2I}\sin (2\delta _2) -K_0\right) ^2 \nonumber \\&\quad \left. -N_2^4\left( \frac{3}{4}\right) ^2\left( K_0^2-4K_0\left( K_{2R}\cos (2\delta _2) +K_{2I}\sin (2\delta _2)\right) + 2K_0 \left( K_{4R}\cos (4\delta _2) \right. \right. \right. \nonumber \\&\quad \left. \left. \left. + K_{4I}\sin (4\delta _2)\right) -4\left( K_{2R}K_{4R}\cos (2\delta _2)-K_{2I}K_{4R}\sin (2\delta _2) \right. \right. \right. \nonumber \\&\quad \left. \left. \left. +K_{4I}K_{2I}\cos (2\delta _2)+K_{2R}K_{4I}\sin (2\delta _2)\right) +4\left( K_{2R}^2+K_{2I}^2\right) + K_{4R}^2+K_{4I}^2 \right) \right] , \end{aligned}$$
(93)
$$\begin{aligned} \det ({\mathbb {A}})&= aN_2^4+bN_2^2+c. \end{aligned}$$
(94)

Let us consider \(X=N_2^2\):

$$\begin{aligned} \det ({\mathbb {A}}) = \frac{1}{4}\left( aX^2+bX+c\right) \end{aligned}$$
(95)

with

$$\begin{aligned} a&=\frac{-1}{64}\left[ 18K_0K_{4I}\sin (4\delta _2)+18K_0K_{4R}\cos (4\delta _2)+\left( -72K_{2I}K_{2r}\cos (2\delta _2)\right. \right. \nonumber \\&\quad \left. \left. +36K_{2I}K_{4R}-36K_{2R}K_{4I}+36K_0K_{2I}\right) \sin (2\delta _2)\right. \nonumber \\&\quad \left. +\left( 36K_{2I}^2-36K_{2R}^2\right) \cos (2\delta _2)^2 +\left( -36K_{2R}K_{4R}-36K_{2I}K_{4I} +36K_0K_{2R}\right) \cos (2\delta _2)+9K_{4R}^2\right. \nonumber \\&\quad \left. +9K_{4I}^2+36K_{2R}^2-27K_0^2\right] , \end{aligned}$$
(96)
$$\begin{aligned} b&=\frac{-3}{4}\left( -1+\gamma _0\right) \left( K_{2R}\cos (2\delta _2) + K_{2I}\sin (2\delta _2)-K_0\right) , \end{aligned}$$
(97)
$$\begin{aligned} c&=\frac{\xi _2^2}{4}\left( -1+\gamma _0\right) ^2. \end{aligned}$$
(98)

Development of equilibrium points of the system with time-dependent nonlinearity

$$\begin{aligned} if_0+\left( i\left( 2\sigma -\gamma _0\right) + \xi _1\right) \phi _1+i\gamma _0 \phi _2 =0. \end{aligned}$$
(99)

Inserting Eq. (45) in Eq. (99):

$$\begin{aligned}&if_0+\left( i\left( 2\sigma -\gamma _0\right) + \xi _1\right) \frac{1}{\gamma _0}\left( -1+\gamma _0 + i\xi _2\right) \phi _2 - \frac{1}{4}\left( \phi _2^3K_2^* -3|\phi _2 |^2 \phi _2K_0 + 3 |\phi _2 |^2\phi _2^*K_2-\phi _2^{*3}K_4 \right) \nonumber \\&\qquad +i\gamma _0 \phi _2 =0, \end{aligned}$$
(100)
$$\begin{aligned}&if_0+\left( i\left( 2\sigma -\gamma _0\right) + \xi _1\right) \frac{N_2e^{i\delta _2}}{\gamma _0}\left[ -1+\gamma _0+i\xi _2 -\frac{N_2^2}{4}\left( K_2^*e^{2i\delta 2}-3K_0+3e^{-2i\delta _2}K_2 - e^{-4i\delta _2}K_4\right) \right] \nonumber \\&\qquad + i\gamma _0 N_2e^{i\delta _2}=0. \end{aligned}$$
(101)

Real part:

$$\begin{aligned}&N_2 ((3 \gamma _0 K_{2I} N_2^2 - 6 K_{2I} N_2^2 \sigma + 4 \xi _1 - 4 \gamma _0 \xi _1 - 3 K_0N_2^2 \xi _1 + 3 K_{2R} N_2^2 \xi _1 - 4 \gamma _0 \xi _2 + 8 \sigma \xi _2) \cos (\delta _2) \nonumber \\&\quad + (-\gamma _0 K_{2I} N_2^2 - \gamma _0 K_{4I} N_2^2 + 2 K_{2I} N_2^2 \sigma + 2 K_{4I}N_2^2 \sigma + K_{2R} N_2^2 \xi _1 - K_{4R} N_2^2 \xi _1) \cos (3\delta _2)+ (4 \gamma _0 \nonumber \\&\quad - 3 \gamma _0 K_0N_2^2 - 3 \gamma _0 K_{2R} N_2^2 - 8\sigma + 8 \gamma _0 \sigma + 6 K_0N_2^2 \sigma + 6 K_{2R} N_2^2 \sigma + 3 K_{2I} N_2^2 \xi _1 + 4 \xi _1 \xi _2) \sin (\delta _2) \nonumber \\&\quad + (\gamma _0 K_{2R} N_2^2 + \gamma _0 K_{4R} N_2^2 - 2 K_{2R} N_2^2 \sigma - 2 K_{4R} N_2^2 \sigma + K_{2I} N_2^2 \xi _1 - K_{4I} N_2^2 \xi _1) \sin (3\delta _2))=0. \end{aligned}$$
(102)

Imaginary part:

$$\begin{aligned} \begin{aligned}&4 f_0 \gamma _0 + (4 \gamma _0 N_2 - 3 \gamma _0 K_0N_2^3 + 3 \gamma _0 K_{2R} N_2^3 - 8 N_2 \sigma + 8 \gamma _0 N_2 \sigma + 6 K_0N_2^3 \sigma - 6 K_{2R} N_2^3 \sigma \\&\quad - 3 K_{2I} N_2^3 \xi _1 + 4 N_2 \xi _1 \xi _2) \cos (\delta _2)+ (\gamma _0 K_{2R} N_2^3 - \gamma _0 K_{4R} N_2^3 - 2 K_{2R} N_2^3 \sigma + 2 K_{4R} N_2^3 \sigma + K_{2I} N2^3 \xi _1 \\&\quad + K_{4I} N_2^3 \xi _1) \cos (3\delta _2) + (3 \gamma _0 K_{2I} N_2^3 - 6 K_{2I} N_2^3 \sigma - 4 N_2 \xi _1 + 4 \gamma _0 N_2 \xi _1 + 3 K_0N_2^3 \xi _1 + 3 K_{2R} N_2^3 \xi _1 + 4 \gamma _0 N_2 \xi _2 \\&\quad - 8 N_2 \sigma \xi _2) \sin (\delta _2)+ (\gamma _0 K_{2I} N_2^3 - \gamma _0 K_{4I} N_2^3 - 2 K_{2I} N_2^3 \sigma + 2 K_{4I} N_2^3 \sigma - K_{2R} N_2^3 \xi _1 - K_{4R} N_2^3 \xi _1) \sin (3 \delta _2)=0. \end{aligned}\end{aligned}$$
(103)

Hence,

$$\begin{aligned} \left\{ \begin{array}{l} a_1\cos (\delta _2)+b_1\sin (\delta _2)=c_1\\ a_2\cos (\delta _2)+b_2\sin (\delta _2)=c_2 \end{array} \right. \end{aligned}$$
(104)

with

$$\begin{aligned} \left\{ \begin{array}{ll} a_1=&{} (3 \gamma _0 K_{2I} N_2^2 - 6 K_{2I} N_2^2 \sigma + 4 \xi _1 - 4 \gamma _0 \xi _1 - 3 K_0 N_2^2 \xi _1 + 3 K_{2R} N_2^2 \xi _1 - 4 \gamma _0 \xi _2 + 8 \sigma \xi _2)\\ b_1=&{}(4 \gamma _0 - 3 \gamma _0 K_0 N_2^2 - 3 \gamma _0 K_{2R} N_2^2 - 8 \sigma + 8 \gamma _0 \sigma + 6 K_0 N_2^2 \sigma + 6 K_{2R} N_2^2 \sigma + 3 K_{2I} N_2^2 \xi _1 + 4 \xi _1 \xi _2) \\ c_1=&{} -((-\gamma _0 K_{2I} N_2^2 - \gamma _0 K_{4I} N_2^2 + 2 K_{2I} N_2^2 \sigma + 2 K_{4I} N_2^2 \sigma + K_{2R} N_2^2 \xi _1 - K_{4R} N_2^2 \xi _1) \cos (3\delta _2)\\ &{} + (\gamma _0 K_{2R} N_2^2 + \gamma _0 K_{4R} N_2^2 - 2 K_{2R} N_2^2 \sigma - 2 K_{4R} N_2^2 \sigma + K_{2I} N_2^2 \xi _1 - K_{4I} N_2^2 \xi _1) \sin (3 \delta _2)),\\ a_2=&{}(4 \gamma _0 N_2 - 3 \gamma _0 K_0 N_2^3 + 3 \gamma _0 K_{2R} N_2^3 - 8 N_2 \sigma + 8 \gamma _0 N_2 \sigma + 6 K_0 N_2^3 \sigma - 6 K_{2R} N_2^3 \sigma \\ &{} - 3 K_{2I} N_2^3 \xi _1 + 4 N_2 \xi _1 \xi _2) \\ b_2=&{} (3 \gamma _0 K_{2I} N_2^3 - 6 K_{2I} N_2^3 \sigma - 4 N_2 \xi _1 + 4 \gamma _0 N_2 \xi _1 + 3 K_0 N_2^3 \xi _1 + 3 K_{2R} N_2^3 \xi _1 + 4 \gamma _0 N_2 \xi _2 - 8 N_2 \sigma \xi _2) \\ c_2=&{} -(4 f_0 \gamma _0 + (\gamma _0 K_{2R} N_2^3 - \gamma _0 K_{4R} N_2^3 - 2 K_{2R} N_2^3 \sigma + 2 K_{4R} N_2^3 \sigma + K_{2I} N_2^3 \xi _1 \\ &{}+K_{4I} N_2^3 \xi _1) \cos (3\delta _2)+ (\gamma _0 K_{2I} N_2^3 - \gamma _0 K_{4I} N_2^3 - 2 K_{2I} N_2^3 \sigma \\ &{}+ 2 K_{4I} N_2^3 \sigma - K_{2R} N_2^3 \xi _1 - K_{4R} N_2^3 \xi _1) \sin (3 \delta _2))\\ \end{array} \right. . \end{aligned}$$
(105)

So,

$$\begin{aligned} (b_2c1 - b_1 c_2)^2 + (a_2 c_1 - a_1 c_2)^2 - (-a_2b_1 + a_1b_2)^2=0. \end{aligned}$$
(106)

Equation (106) can be reorganized as a polynomial of \(N_2\):

$$\begin{aligned} p_{10}N_2^{10}+p_8N_2^8+p_7N_2^7+p_6N_2^6+p_5N_2^5+p_4N_2^4+p_3N_2^3+p_2N_2^2+p_0=0 \end{aligned}$$
(107)

with

$$\begin{aligned} p_{10}&= -9((\gamma _0-2\sigma )^2+\xi _1^2)^2 (9K_0^4+K_0(8K_{2I}K_{2R}K_{4I}-4K_{2I}^2 K_{4R}+4K_{2R}^2 K_{4R})\nonumber \\&\quad +(K_{2I}^2+K_{2R}^2)(8K_{2I}^2+8K_{2R}^2-K_{4I}^2-K_{4R}^2)-K_0^2 (19K_{2I}^2+19K_{2R}^2+K_{4I}^2+K_{4R}^2)\nonumber \\&\quad -2(K_0^2 (K_{2I}K_{4I}-K_{2R}K_{4R})+(K_{2I}^2+K_{2R}^2)(K_{2I}K_{4I}-K_{2R}K_{4R})+K_0(-3K_{2I}^2 \nonumber \\&\quad K_{2R}+K_{2R}^3-K_{2R}K_{4I}^2+2K_{2I}K_{4I}K_{4R}+K_{2R}K_{4R}^2))\cos (6 \delta _2)+2(K_0^2 (K_{2R}K_{4I}+K_{2I}K_{4R})\nonumber \\&\quad +(K_{2I}^2+K_{2R}^2)(K_{2R}K_{4I}+K_{2I}K_{4R})+K_0(K_{2I}^3-2K_{2R}K_{4I}K_{4R}\nonumber \\&\quad +K_{2I}(-3K_{2R}^2-K_{4I}^2+K_{4R}^2)))\sin (6\delta _2), \end{aligned}$$
(108)
$$\begin{aligned} p_8&=24((\gamma _0-2\sigma )^2+\xi _1^2)(\gamma _0(-(18K_0^3+4K_{2I}K_{2R}K_{4I}-2K_{2I}^2 K_{4R}+2K_{2R}^2 K_{4R}\nonumber \\&\quad -K_0(19K_{2I}^2+19K_{2R}^2+K_{4I}^2+K_{4R}^2))(4\sigma (1+\sigma )+\xi _1^2)-8(K_{2I}^2 K_{4I}-K_{2R}^2 K_{4I}\nonumber \\&\quad +2K_{2I}K_{2R}K_{4R})\sigma \xi _2)+(4\sigma ^2+\xi _1^2)(18K_0^3-K_0(19K_{2I}^2+19K_{2R}^2\nonumber \\&\quad +K_{4I}^2+K_{4R}^2)-2K_{2I}^2\nonumber \\&(K_{4R}-K_{4I}\xi _2)+2K_{2R}^2 (K_{4R}-K_{4I}\xi _2)+4K_{2I}K_{2R}(K_{4I}+K_{4R}\xi _2))+\gamma _0^2 (18K_0^3 (1+2\sigma )\nonumber \\&\quad -K_0(19K_{2I}^2+19K_{2R}^2+K_{4I}^2+K_{4R}^2)(1+2\sigma )+2K_{2R}^2 (K_{4R}+2K_{4R}\sigma -K_{4I}(\xi _1+\xi _2))\nonumber \\&\quad +2K_{2I}^2 (-K_{4R}(1+2\sigma )+K_{4I}(\xi _1+\xi _2))\nonumber \\&\quad +4K_{2I}K_{2R}(K_{4I}+2K_{4I}\sigma +K_{4R}(\xi _1+\xi _2)))\nonumber \\&\quad +(\gamma _0(-(3K_{2I}^2 K_{2R}-2K_{2I}K_{4I}(K_0+K_{4R})\nonumber \\&\quad -K_{2R}(K_{2R}^2-K_{4I}^2-2K_0K_{4R}+K_{4R}^2))(4\sigma (1+\sigma )+\xi _1^2)\nonumber \\&\quad -4(K_{2I}^3+2K_{2R}K_{4I}K_{4R}+K_{2I}(-3K_{2R}^2\nonumber \\&\quad +K_{4I}^2-K_{4R}^2))\sigma \xi _2)+(4\sigma ^2+\xi _1^2)(3K_{2I}^2 K_{2R}-2K_{2I}K_{4I}(K_0+K_{4R})\nonumber \\&\quad +K_{2I}^3 \xi _2+K_{2I}(-3K_{2R}^2+K_{4I}^2-K_{4R}^2)\xi _2+K_{2R}(-K_{2R}^2\nonumber \\&\quad +K_{4I}^2+2K_0K_{4R}-K_{4R}^2+2K_{4I}K_{4R}\xi _2))\nonumber \\&\quad +\gamma _0^2 (3K_{2I}^2 (K_{2R}+2K_{2R}\sigma )+K_{2I}^3 (\xi _1+\xi _2)\nonumber \\&\quad +K_{2R}(-K_{2R}^2 (1+2\sigma )+K_{4I}^2 (1+2\sigma )-K_{4R}(-2K_0+K_{4R})\nonumber \\&\quad (1+2\sigma )+2K_{4I}K_{4R}(\xi _1+\xi _2))-K_{2I}(2K_0(K_{4I}+2K_{4I}\sigma )\nonumber \\&\quad +2K_{4I}(K_{4R}+2K_{4R}\sigma )-K_{4I}^2 (\xi _1+\xi _2)\nonumber \\&\quad +(3K_{2R}^2+K_{4R}^2)(\xi _1+\xi _2))))\cos (6 \delta _2)+(-\gamma _0((K_{2I}^3+2K_{2R}K_{4I}(K_0-K_{4R})+K_{2I}(-3K_{2R}^2-K_{4I}^2\nonumber \\&\quad +2K_0K_{4R}+K_{4R}^2))(4\sigma (1+\sigma )+\xi _1^2)+4(-3K_{2I}^2 K_{2R}-2K_{2I}K_{4I}K_{4R}+K_{2R}(K_{2R}^2+K_{4I}^2-K_{4R}^2))\sigma \xi _2)\nonumber \\&\quad +\gamma _0^2 (K_{2I}^3 (1+2\sigma )-3K_{2I}^2 K_{2R}(\xi _1+\xi _2)-K_{2I}(K_{4I}^2 (1+2\sigma )-K_{4R}(2K_0+K_{4R})(1+2\sigma )+K_{2R}^2 (3+6\sigma )\nonumber \\&\quad +2K_{4I}K_{4R}(\xi _1+\xi _2))+K_{2R}(2K_0(K_{4I}+2K_{4I}\sigma )\nonumber \\&\quad -2K_{4I}(K_{4R}+2K_{4R}\sigma )+K_{4I}^2 (\xi _1+\xi _2)+(K_{2R}-K_{4R})\nonumber \\&\quad (K_{2R}+K_{4R})(\xi _1+\xi _2)))+(4\sigma ^2+\xi _1^2)(K_{2I}^3\nonumber \\&\quad +2K_{2R}K_{4I}(K_0-K_{4R})-3K_{2I}^2 K_{2R}\xi _2+K_{2R}(K_{2R}^2\nonumber \\&\quad +K_{4I}^2-K_{4R}^2)\xi _2+K_{2I}(-3K_{2R}^2+K_{4R}(2K_0+K_{4R})\nonumber \\&\quad -K_{4I}(K_{4I}+2K_{4R}\xi _2))))\sin (6\delta _2), \end{aligned}$$
(109)
$$\begin{aligned} p_7&=72f_0\gamma _0((\gamma _0-2\sigma )^2+\xi _1^2)(((K_0^2 (K_{2R}-K_{4R})+(K_{2I}^2+K_{2R}^2)(K_{2R}-K_{4R})\nonumber \\&\quad -2K_0(K_{2I}(K_{2I}+K_{4I})+K_{2R}(-K_{2R}+K_{4R})))(\gamma _0-2\sigma )+(K_0^2 (K_{2I}+K_{4I})\nonumber \\&\quad +(K_{2I}^2+K_{2R}^2)(K_{2I}+K_{4I})-2K_0K_{2R}(2K_{2I}+K_{4I})+2K_0K_{2I}K_{4R})\xi _1)\cos (3\delta _2)\nonumber \\&\quad +((K_0^2 (K_{2I}-K_{4I})+(K_{2I}^2+K_{2R}^2)(K_{2I}-K_{4I})-2K_0K_{2R}K_{4I}+2K_0K_{2I}(2K_{2R}+K_{4R}))(\gamma _0-2\sigma )\nonumber \\&\quad -(2K_0K_{2I}(K_{2I}-K_{4I})+K_0^2 (K_{2R}+K_{4R})-2K_0K_{2R}(K_{2R}+K_{4R})+(K_{2I}^2+K_{2R}^2)(K_{2R}\nonumber \\&\quad +K_{4R}))\xi _1)\sin (3\delta _2), \end{aligned}$$
(110)
$$\begin{aligned} p_6&= -16 (\gamma _0^2 (-(-54 K_0^2 + 19 K_{2I}^2 + 19 K_{2R}^2 + K_{4I}^2\nonumber \\&\quad + K_{4R}^2) (8 \sigma ^2 (3 + 2 \sigma (3 + \sigma )) + 2 (1 + 6 \sigma + 4 \sigma ^2) \xi _1^2 + \xi _1^4)\nonumber \\&\quad - 2 (-18 K_0^2 + 19 K_{2I}^2 + 19 K_{2R}^2 + K_{4I}^2 + K_{4R}^2) \xi _1 (4 \sigma ^2 + \xi _1^2) \xi _2 \nonumber \\&\quad - 2 (-18 K_0^2 + 19 K_{2I}^2 + 19 K_{2R}^2 + K_{4I}^2 + K_{4R}^2) \nonumber \\&\quad (12 \sigma ^2 + \xi _1^2) \xi _2^2) + (4 \sigma ^2 + \xi _1^2)^2 (-(19 K_{2I}^2 + 19 K_{2R}^2 + K_{4I}^2 \nonumber \\&\quad + K_{4R}^2) (1 + \xi _2^2) + 18 K_0^2 (3 + \xi _2^2)) \nonumber \\&\quad + 2 \gamma _0^3 ((19 K_{2I}^2 + 19 K_{2R}^2 + K_{4I}^2 + K_{4R}^2) ((1 + 2 \sigma ) (4 \sigma (1 + \sigma ) + \xi _1^2)\nonumber \\&\quad + 4 \sigma \xi _1 \xi _2 + 4 \sigma \xi _2^2) - 18 K_0^2 (3 (1 + 2 \sigma ) \nonumber \\&\quad (4 \sigma (1 + \sigma ) + \xi _1^2) + 4 \sigma \xi _1 \xi _2 + 4 \sigma \xi _2^2)) + \gamma _0^4 (-(19 K_{2I}^2\nonumber \\&\quad + 19 K_{2R}^2 + K_{4I}^2 + K_{4R}^2) (1 + 4 \sigma (1 + \sigma ) + (\xi _1 + \xi _2)^2)\nonumber \\&\quad + 18 K_0^2 (3 + 12 \sigma (1 + \sigma ) + (\xi _1 + \xi _2)^2)) - 2 \gamma _0 (4 \sigma ^2 + \xi _1^2) (-(19 K_{2I}^2 \nonumber \\&\quad + 19 K_{2R}^2 + K_{4I}^2 + K_{4R}^2) (\xi _1^2 + 4 \sigma (1 + \sigma + \xi _2^2))\nonumber \\&\quad + 18 K_0^2 (3 \xi _1^2 + 4 \sigma (3 + 3 \sigma + \xi _2^2))) - 2 ((\gamma _0 - 2 \sigma )^2 + \xi _1^2) ((4 \sigma ^2 \nonumber \\&\quad + \xi _1^2) (1 + \xi _2^2) + \gamma _0^2 (1 + 4 \sigma (1 + \sigma ) + (\xi _1 + \xi _2)^2)\nonumber \\&\quad - 2 \gamma _0 (\xi _1^2 + 2 \sigma (1 + 2 \sigma + \xi _2^2))) ((K_{2I} K_{4I} \nonumber \\&\quad - K_{2R} K_{4R}) \cos (6 \delta _2])- (K_{2R} K_{4I} + K_{2I} K_{4R}) \sin (6 \delta _2))), \end{aligned}$$
(111)
$$\begin{aligned} p_5&=192f_{0}\gamma _{0}((\gamma _0^3 (K_{2I}^2 (1+2\sigma )-K_0(K_{2R}-K_{4R})(1+2\sigma ) -K_{2R}(K_{2R}-K_{4R}+2K_{2R}\sigma \nonumber \\&\quad -2K_{4R}\sigma +K_{4I}(\xi _1+\xi _2))+K_{2I}(K_{4I}+2K_{4I}\sigma -(2K_{2R}-K_{4R})(\xi _1+\xi _2)))\nonumber \\&\quad -(4\sigma ^2+\xi _1^2)(K_0(-2K_{2R}\sigma +2K_{4R}\sigma +K_{4I}\xi _1)+K_{2I}^2 (2\sigma -\xi _1\xi _2)-K_{2R}(2K_{2R}\sigma \nonumber \\&\quad -2K_{4R}\sigma +K_{4I}\xi _1+2K_{4I}\sigma \xi _2-K_{2R}\xi _1\xi _2+K_{4R}\xi _1\xi _2)\nonumber \\&\quad +K_{2I}((K_0-2K_{2R}+K_{4R})\xi _1+2(-2K_{2R}+K_{4R})\sigma \xi _2\nonumber \\&\quad +K_{4I}(2\sigma -\xi _1\xi _2)))-\gamma _0^2 (K_0(-2(K_{2R}-K_{4R})\sigma (3+4\sigma )+K_{4I}\xi _1+2K_{4I}\sigma \xi _1+(-K_{2R} +K_{4R})\xi _1^2)\nonumber \\&\quad +K_{2I}^2 (6\sigma +8\sigma ^2-\xi _1\xi _2)-K_{2R}(2(K_{2R}-K_{4R})\sigma (3+4\sigma )+K_{4I}\xi _1+4K_{4I}\sigma \xi _1+6K_{4I}\sigma \xi _2\nonumber \\&\quad +(-K_{2R}+K_{4R})\xi _1\xi _2)+K_{2I}(K_0(\xi _1+2\sigma \xi _1)-(2K_{2R}\nonumber \\&\quad -K_{4R})(\xi _1+4\sigma \xi _1+6\sigma \xi _2)+K_{4I}(6\sigma +8\sigma ^2-\xi _1\xi _2)))\nonumber \\&\quad +\gamma _0(K_0(-4(K_{2R}-K_{4R})\sigma ^2 (3+2\sigma )+4K_{4I}\sigma (1+\sigma )\xi _1-(K_{2R}-K_{4R})(1+2\sigma )\xi _1^2 +K_{4I}\xi _1^3)\nonumber \\&\quad +K_{2I}^2 (\xi _1^2+2\sigma (6\sigma +4\sigma ^2+\xi _1(\xi _1-2\xi _2)))+K_{2I}((K_0-2K_{2R}\nonumber \\&\quad +K_{4R})\xi _1(4\sigma (1+\sigma )+\xi _1^2) +K_{4I}(\xi _1^2+2\sigma (6\sigma +4\sigma ^2+\xi _1(\xi _1-2\xi _2)))-(2K_{2R}\nonumber \\&\quad -K_{4R})(12\sigma ^2+\xi _1^2)\xi _2) -K_{2R}(K_{2R}(\xi _1^2+2\sigma (6\sigma +4\sigma ^2+\xi _1(\xi _1-2\xi _2)))\nonumber \\&\quad -K_{4R}(\xi _1^2+2\sigma (6\sigma +4\sigma ^2+\xi _1(\xi _1-2\xi _2)))\nonumber \\&\quad +K_{4I}(4\sigma \xi _1+\xi _1^2 (\xi _1+\xi _2)+4\sigma ^2 (\xi _1+3\xi _2)))))\cos (3 \delta _2)+(\gamma _0^3 (-K_0(K_{2I}-K_{4I})(1+2\sigma )-K_{2I}^2 (\xi _1+\xi _2)\nonumber \\&\quad -K_{2I}(K_{4R}+2(K_{2R}+2K_{2R}\sigma +K_{4R}\sigma )-K_{4I}(\xi _1+\xi _2))\nonumber \\&\quad +K_{2R}(K_{4I}+2K_{4I}\sigma +(K_{2R}+K_{4R})(\xi _1+\xi _2)))\nonumber \\&\quad +(4\sigma ^2+\xi _1^2)(2K_0(K_{2I}-K_{4I})\sigma +K_0(K_{2R}+K_{4R})\xi _1+K_{2I}^2 (\xi _1+2\sigma \xi _2)\nonumber \\&\quad +K_{2I}(4K_{2R}\sigma +2K_{4R}\sigma -K_{4I}\xi _{1}\nonumber \\&\quad -(2K_{4I}\sigma +(2K_{2R}+K_{4R})\xi _1)\xi _2)-K_{2R}((K_{2R}+K_{4R})(\xi _1+2\sigma \xi _2)+K_{4I}(2\sigma -\xi _1\xi _2)))\nonumber \\&\quad +\gamma _0^2 (K_0(2(K_{2I}-K_{4I})\sigma (3+4\sigma )+(K_{2R}+K_{4R})(1+2\sigma )\xi _1\nonumber \\&\quad +(K_{2I}-K_{4I})\xi _1^2)+K_{2I}^2 (\xi _1+4\sigma \xi _1+6\sigma \xi _2)\nonumber \\&\quad +K_{2I}(2(2K_{2R}+K_{4R})\sigma (3+4\sigma )-K_{4I}\xi _1-4K_{4I}\sigma \xi _1\nonumber \\&\quad -(6K_{4I}\sigma +(2K_{2R}+K_{4R})\xi _1)\xi _2)\nonumber \\&\quad -K_{2R}((K_{2R}+K_{4R})(\xi _1+4\sigma \xi _1+6\sigma \xi _2)+K_{4I}(6\sigma +8\sigma ^2-\xi _1\xi _2)))\nonumber \\&\quad +\gamma _0(K_0(-4(K_{2I}-K_{4I})\sigma ^2 (3+2\sigma )\nonumber \\&\quad -4(K_{2R}+K_{4R})\sigma (1+\sigma )\xi _1-(K_{2I}-K_{4I})(1+2\sigma )\xi _1^2-(K_{2R}\nonumber \\&\quad +K_{4R})\xi _1^3)+K_{2I}(-4(2K_{2R}+K_{4R})\sigma ^2 (3+2\sigma )\nonumber \\&\quad +4K_{4I}\sigma (1+\sigma )\xi _1-(2K_{2R}+K_{4R})(1+2\sigma )\xi _1^2+K_{4I}\xi _1^3\nonumber \\&\quad +4(2K_{2R}+K_{4R})\sigma \xi _1\xi _2+K_{4I}(12\sigma ^2+\xi _1^2)\xi _2)\nonumber \\&\quad -K_{2I}^2 (4\sigma \xi _1+\xi _1^2 (\xi _1+\xi _2)+4\sigma ^2 (\xi _1+3\xi _2))\nonumber \\&\quad +K_{2R}(K_{4I}(\xi _1^2+2\sigma (6\sigma +4\sigma ^2+\xi _1(\xi _1-2\xi _2)))\nonumber \\&\quad +(K_{2R}+K_{4R})(4\sigma \xi _1+\xi _1^2 (\xi _1+\xi _2)\nonumber \\&\quad +4\sigma ^2 (\xi _1+3\xi _2)))))\sin (3\delta _2), \end{aligned}$$
(112)
$$\begin{aligned} p_4&=-128(2(4\sigma ^2+\xi _1^2)^2 (1+\xi _2^2)^2-8\gamma _0(4\sigma ^2+\xi _1^2)(1+\xi _2^2)(\xi _1^2\nonumber \\&\quad +2\sigma (1+2\sigma +\xi _2^2))+\gamma _0^4 (3f_0^2 (K_0+K_{2R}\nonumber \\&\quad +2(K_0+K_{2R})\sigma +K_{2I}(\xi _1+\xi _2))+2(1+4\sigma (1+\sigma )\nonumber \\&\quad +(\xi _1+\xi _2)^2)^2)+\gamma _0^2 (192\sigma ^3 (1+\xi _2^2)+64\sigma ^4 (3+\xi _2^2)\nonumber \\&\quad +12\sigma \xi _1(f_0^2 (K_{2I}-K_{2R}\xi _2)+4\xi _1(1+\xi _2^2))+4\sigma ^2 (3f_0^2 (K_0+K_{2R}+K_{2I}\xi _2)\nonumber \\&\quad +12(1+\xi _2^2)^2+8\xi _1^2 (3+\xi _2^2)+8\xi _1(\xi _2+\xi _2^3))\nonumber \\&\quad +\xi _1^2 (4+12\xi _1^2+3f_0^2 (K_0-K_{2R}-K_{2I}\xi _2)+4\xi _2(\xi _1+\xi _2)(2+\xi _2(\xi _1+\xi _2))))\nonumber \\&\quad -\gamma _0^3 (128\sigma ^4+64\sigma ^3 (3+\xi _2^2)\nonumber \\&\quad +4\sigma ^2 (3f_0^2 (K_0+K_{2R})+8(3+2\xi _1^2+2\xi _1\xi _2+3\xi _2^2))+\xi _1(8\xi _1(1+(\xi _1+\xi _2)^2)\nonumber \\&\quad +3f_0^2 (2K_{2I}+K_0\xi _1-K_{2R}(\xi _1+2\xi _2)))\nonumber \\&\quad +4\sigma (3f_0^2 (K_0+K_{2R}+K_{2I}(\xi _1+\xi _2))+4((1+\xi _2^2)^2+\xi _1^2 (3+\xi _2^2)+2\xi _1(\xi _2+\xi _2^3))))), \end{aligned}$$
(113)
$$\begin{aligned} p_3&= 128f_0\gamma _0((4\sigma ^2+\xi _1^2)(1+\xi _2^2)+\gamma _0^2 (1+4\sigma (1+\sigma )+(\xi _1+\xi _2)^2)\nonumber \\&\quad -2\gamma _0(\xi _1^2+2\sigma (1+2\sigma +\xi _2^2))) (((K_{2R}-K_{4R})(\gamma _0-2\sigma )+(K_{2I}+K_{4I})\xi _1)\cos (3\delta _2)\nonumber \\&\quad +((K_{2I}-K_{4I})(\gamma _0-2\sigma )-(K_{2R}+K_{4R})\xi _1)\sin (3\delta _2)), \end{aligned}$$
(114)
$$\begin{aligned} p_2&=-128(2(4\sigma ^2+\xi _1^2)^2 (1+\xi _2^2)^2-8\gamma _0(4\sigma ^2+\xi _1^2)(\xi _2^2)(\xi _1^2+2\sigma (1+2\sigma +\xi _2^2))\nonumber \\&\quad +\gamma _0^4 (3f_0^2 (K_0+K_{2R}+2(K_0+K_{2R})\sigma +K_{2I}(\xi _1+\xi _2))\nonumber \\&\quad +2(1+4\sigma (1+\sigma )+(\xi _1+\xi _2)^2)^2) +\gamma _0^2 (192\sigma ^3 (1+\xi _2^2)+64\sigma ^4 (3+\xi _2^2)+12\sigma \xi _1(f_0^2 (K_{2I}-K_{2R}\xi _2)\nonumber \\&\quad +4\xi _1(1+\xi _2^2))+4\sigma ^2 (3f_0^2 (K_0+K_{2R}+K_{2I}\xi _2)\nonumber \\&\quad +12(1+\xi _2^2)^2+8\xi _1^2 (3+\xi _2^2)+8\xi _1(\xi _2+\xi _2^3))+\xi _1^2 (4+12\xi _1^2+3f_0^2 (K_0-K_{2R}-K_{2I}\xi _2)\nonumber \\&\quad +4\xi _2(\xi _1+\xi _2)(2+\xi _2(\xi _1+\xi _2)))) -\gamma _0^3 (128\sigma ^4+64\sigma ^3 (3+\xi _2^2)+4\sigma ^2 (3f_0^2 (K_0+K_{2R})\nonumber \\&\quad +8(3+2\xi _1^2+2\xi _1\xi _2+3\xi _2^2))+\xi _1(8\xi _1(1+(\xi _1+\xi _2)^2)+3f_0^2 (2K_{2I}+K_0\xi _1-K_{2R}(\xi _1+2\xi _2)))\nonumber \\&\quad +4\sigma (3f_0^2 (K_0+K_{2R}+K_{2I}(\xi _1+\xi _2)) +4((1+\xi _2^2)^2+\xi _1^2 (3+\xi _2^2)+2\xi _1(\xi _2+\xi _2^3))))), \end{aligned}$$
(115)
$$\begin{aligned} p_0&= 256f_0^2 \gamma _0^2 ((4\sigma ^2+\xi _1^2)(1+\xi _2^2)+\gamma _0^2(1+4\sigma (1+\sigma )\nonumber \\&\quad +(\xi _1+\xi _2)^2)-2\gamma _0(\xi _1^2+2\sigma (1+2\sigma +\xi _2^2))). \end{aligned}$$
(116)

Development backbone curve with variable rigidity

$$\begin{aligned} p_{bc,0}&=-256(\gamma _0+2((-1)+\gamma _0)\sigma )^4, \end{aligned}$$
(117)
$$\begin{aligned} p_{bc,1}&=768K_0(\gamma _0-2\sigma )(\gamma _0+2((-1)+\gamma _0)\sigma )^3, \end{aligned}$$
(118)
$$\begin{aligned} p_{bc,2}&=-16(\gamma _0-2\sigma )^2(\gamma _0+2((-1)+\gamma _0)\sigma )^2(54K_0^2-19K_{2I}^2-19K_{2R}^2-K_{4I}^2-K_{4R}^2\nonumber \\&\quad +(-2K_{2I}K_{4I}+2K_{2R}K_{4R})\cos (6\delta _2) \nonumber \\&\quad +2(K_{2R}K_{4I}+K_{2I}K_{4R})\sin (6\delta _2)), \end{aligned}$$
(119)
$$\begin{aligned} p_{bc,3}&=24(\gamma _0-2\sigma )^3(\gamma _0+2((-1)+\gamma _0)\sigma )(18K_0^3+4K_{2I}K_{2R}K_{4I}\nonumber \\&\quad -2K_{2I}^2K_{4R}+2K_{2R}^2K_{4R}-K_0(19 K_{2I}^2+19K_{2R}^2+K_{4I}^2+K_{4R}^2) \nonumber \\&\quad +(3K_{2I}^2K_{2R}-2K_{2I}K_{4I}(K_0+ K_{4R})\nonumber \\&\quad -K_{2R}(K_{2R}^2-K_{4I}^2-2K_0K_{4R}+K_{4R}^2))\cos (6\delta _2) \nonumber \\&\quad +(K_{2I}^3+2K_{2R}K_{4I}(K_0-K_{4R})\nonumber \\&\quad +K_{2I}(-3K_{2R}^2-K_{4I}^2+2K_0K_{4R}+K_{4R}^2))\sin (6\delta _2)), \end{aligned}$$
(120)
$$\begin{aligned} p_{cb,4}&=-9(\gamma _0-2\sigma )^4(9K_0^4+K_0(8K_{2I}K_{2R}K_{4I}-4K_{2I}^2K_{4R}+4K_{2R}^2K_{4R})\nonumber \\&\quad +(K_{2I}^2+K_{2R}^2)(8K_{2I}^2+8K_{2R}^2-K_{4I}^2-K_{4R}^2) \nonumber \\&\quad -K_0^2(19K_{2I}^2+19K_{2R}^2+K_{4I}^2+K_{4R}^2)-2(K_0^2(K_{2I}K_{4I}-K_{2R}K_{4R})\nonumber \\&\quad +(K_{2I}^2+K_{2R}^2)(K_{2I}K_{4I}-K_{2R}K_{4R}) \nonumber \\&\quad +K_0(-3K_{2I}^2K_{2R}+K_{2R}^3-K_{2R}K_{4I}^2+2K_{2I}K_{4I}K_{4R}+K_{2R}K_{4R}^2))\cos (6\delta _2)\nonumber \\&\quad +2(K_0^2K_{2R}K_{4I}+K_{2I}K_{4R}) \nonumber \\&\quad +(K_{2I}^2+K_{2R}^2)(K_{2R}K_{4I}+K_{2I}K_{4R})+K_0(K_{2I}^3-2K_{2R}K_{4I}K_{4R}\nonumber \\&\quad + K_{2I}(-3K_{2R}^2-K_{4I}^2+K_{4R}^2)))\sin (6\delta _2). \end{aligned}$$
(121)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labetoulle, A., Ture Savadkoohi, A. & Gourdon, E. Detection of different dynamics of two coupled oscillators including a time-dependent cubic nonlinearity. Acta Mech 233, 259–290 (2022). https://doi.org/10.1007/s00707-021-03119-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03119-w

Navigation