Skip to main content
Log in

General nonlocal Kelvin–Voigt viscoelasticity: application to wave propagation in viscoelastic media

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we develop a new relaxation model that accounts for the nonlocal fields of Kelvin–Voigt viscoelastic materials and assumes different nonlocal-attenuations of the material’s elastic and viscous properties. The new relaxation model is then implemented to study the influence of the nonlocal, non-neighbor interactions on the wave propagation in viscoelastic media, while elucidating how the contrast between longitudinal and transverse nonlocal fields contributes to the dispersion of the propagating waves. The numerical results reveal two mechanisms of viscoelastic wave damping, as in addition to the viscosity—which is an explicit wave damping—viscoelastic waves are also damped implicitly by the nonlocal effect. We therefore foresee that the new relaxation model will be used for the design of non-reciprocal and non-Hermitian material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shaat, M.: A general nonlocal theory and its approximations for slowly varying acoustic waves. Int. J. Mech. Sci. 130, 52–63 (2017)

    Article  Google Scholar 

  2. Szabo, T.L., Wu, J.: A model for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107, 2437–2446 (2000)

    Article  Google Scholar 

  3. Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. O’Connell, R.J., Budiansky, B.: Viscoelastic properties of fluid-saturated cracked solids. J. Geophys. Res. 82, 5719–5735 (1977)

    Article  Google Scholar 

  5. Murphy, W.F., Winkler, K.W., Kleinberg, R.L.: Acoustic relaxation in sedimentary rocks: dependence on grain contacts and fluid saturation. Geophysics 51, 757–766 (1986)

    Article  Google Scholar 

  6. Carcione, J.M.: Wave propagation in anisotropic linear viscoelastic media: theory and simulated wavefields. Geophys. J. Int. 101, 739–750 (1990)

    Article  MATH  Google Scholar 

  7. Lockett, F.J.: The reflection and refraction of waves at an interface between viscoelastic materials. J. Mech. Phys. Solids 10, 53–64 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cooper, H.F., Reiss, E.L.: Reflection of plane viscoelastic waves from plane boundaries. J. Acoust. Soc. Am. 39, 1133–1138 (1966)

    Article  Google Scholar 

  9. Buchen, P.W.: Reflection, transmission and diffraction of SH-waves in linear viscoelastic solids. Geophys. J. Int. 25, 97–113 (1971)

    Article  Google Scholar 

  10. Borcherdt, R.D.: Rayleigh-type surface wave on a linear viscoelastic half-space. J. Acoust. Soc. Am. 54, 1651–1653 (1973)

    Article  MATH  Google Scholar 

  11. Chin, R.C.: Wave propagation in viscoelastic media (No. UCRL-83019). California Univ., Livermore (USA). Lawrence Livermore Lab (1979)

  12. Kim, D., Kim, J., Sheen, D.: Absorbing boundary conditions for wave propagation in viscoelastic media. J. Comput. Appl. Math. 76, 301–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  15. Meral, F.C., Royston, T.J., Magin, R.L.: Rayleigh-Lamb wave propagation on a fractional order viscoelastic plate. J. Acoust. Soc. Am. 129, 1036–1045 (2011)

    Article  Google Scholar 

  16. Jazia, A.B., Lombard, B., Bellis, C.: Wave propagation in a fractional viscoelastic Andrade medium: diffusive approximation and numerical modeling. Wave Motion 51, 994–1010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lazopoulos, A.K., Karaoulanis, D.: On Λ-fractional viscoelastic models. Axioms 10, 22 (2021)

    Article  Google Scholar 

  18. Cai, W., Chen, W., Fang, J., Holm, S.: A survey on fractional derivative modeling of power-law frequency-dependent viscous dissipative and scattering attenuation in acoustic wave propagation. Appl. Mech. Rev. 70, 030802 (2018)

    Article  Google Scholar 

  19. Long, J., Xiao, R., Chen, W.: Fractional viscoelastic models with non-singular kernels. Mech. Mater. 127, 55–64 (2018)

    Article  Google Scholar 

  20. Bonfanti, A., Kaplan, J.L., Charras, G., Kabla, A.: Fractional viscoelastic models for power-law materials. Soft Matter 16, 6002–6020 (2020)

    Article  Google Scholar 

  21. Postma, G.W.: Changes of shape of seismic impulses in homogeneous viscoelastic media. Geophys. Prospect. 6, 438–455 (1958)

    Article  Google Scholar 

  22. Horton, C.W.: A loss mechanism for the Pierre shale. Geophysics 24, 667–680 (1959)

    Article  Google Scholar 

  23. Cochran, W.: Interpretation of phonon dispersion curves. In: Wallis, R.F. (ed.) Lattice Dynamics, pp. 75–84. Pergamon, New York (1965)

    Chapter  Google Scholar 

  24. Autuori, G., Cluni, F., Gusella, V., Pucci, P.: Mathematical models for nonlocal elastic composite materials. Adv. Nonlinear Anal. 6, 355–382 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, H., Patnaik, S., Walsh, T.F., Jared, B.H., Semperlotti, F.: Nonlocal elastic metasurfaces: enabling broadband wave control via intentional nonlocality. Proc. Natl. Acad. Sci. 117, 26099–26108 (2020)

    Article  Google Scholar 

  26. Tarasov, V.E.: Lattice model with nearest-neighbor and next-nearest-neighbor interactions for gradient elasticity. Discontinuity Nonlinearity Complex 4, 11–23 (2015)

    Article  Google Scholar 

  27. Wang, L., Hu, H.: Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71, 195412 (2005)

    Article  Google Scholar 

  28. Chakraborty, A.: Wave propagation in anisotropic media with non-local elasticity. Int. J. Solids Struct. 44, 5723–5741 (2007)

    Article  MATH  Google Scholar 

  29. De Domenico, D., Askes, H., Aifantis, E.C.: Gradient elasticity and dispersive wave propagation: model motivation and length scale identification procedures in concrete and composite laminates. Int. J. Solids Struct. 158, 176–190 (2019)

    Article  Google Scholar 

  30. Ahmadi, G.: Linear theory of non-local viscoelasticity. Int. J. Non-Linear Mech. 10, 253–258 (1975)

    Article  MATH  Google Scholar 

  31. Nowinski, J.L.: On the non-local aspects of stress in a viscoelastic medium. Int. J. Non-Linear Mech. 21, 439–446 (1986)

    Article  MATH  Google Scholar 

  32. Acharya, D.P., Mondal, A.: Propagation of Rayleigh surface waves with small wavelengths in nonlocal visco-elastic solids. Sadhana 27, 605–612 (2002)

    Article  MATH  Google Scholar 

  33. Zhao, X.C., Lei, Y.J., Zhou, J.P.: Strain analysis of nonlocal viscoelastic Kelvin bar in tension. Appl. Math. Mech. 29, 67–74 (2008)

    Article  MATH  Google Scholar 

  34. Lei, Y., Murmu, T., Adhikari, S., Friswell, M.I.: Dynamic characteristics of damped viscoelastic nonlocal Euler-Bernoulli beams. Eur. J. Mech. A Solids 42, 125–136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lei, Y., Adhikari, S., Friswell, M.I.: Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams. Int. J. Eng. Sci. 66, 1–13 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rajabi, K., Hosseini-Hashemi, S.: Application of the generalized Hooke’s law for viscoelastic materials (GHVMs) in nonlocal free damped vibration analysis of viscoelastic orthotropic nanoplates. Int. J. Mech. Sci. 124, 158–165 (2017)

    Article  Google Scholar 

  37. Rajabi, K., Hosseini-Hashemi, S.: Application of the generalized Hooke’s law for viscoelastic materials (GHVMs) in nanoscale mass sensing applications of viscoelastic nanoplates: a theoretical study. Eur. J. Mech. A Solids 67, 71–83 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ghavanloo, E.: Persistence length of collagen molecules based on nonlocal viscoelastic model. J. Biol. Phys. 43, 525–534 (2017)

    Article  Google Scholar 

  39. Li, L., Lin, R., Ng, T.Y.: A fractional nonlocal time-space viscoelasticity theory and its applications in structural dynamics. Appl. Math. Model. 84, 116–136 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shaat, M., Ghavanloo, E., Fazelzadeh, S.A.: Review on nonlocal continuum mechanics: physics, material applicability, and mathematics. Mech. Mater. 150, 103587 (2020)

    Article  Google Scholar 

  41. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)

    Article  MATH  Google Scholar 

  42. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shaat, M.: Size-dependence of Young’s modulus and Poisson’s ratio: effects of material dispersion. Mech. Mater. 133, 111–119 (2019)

    Article  Google Scholar 

  44. Shaat, M., Abdelkefi, A.: New insights on the applicability of Eringen’s nonlocal theory. Int. J. Mech. Sci. 121, 67–75 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Equation (10) can be rewritten as

$$t_{11} (x,t) = T_{ - \lambda } + T_{ + \lambda } + T_{ - \mu } + T_{ + \mu } + T_{ - \lambda v} + T_{ + \lambda v} + T_{ - \mu v} + T_{ + \mu v},$$
(A1)

where

$$T_{ - \lambda } = \frac{{\overline{\lambda }}}{{2e_{\lambda } a}}\int\limits_{ - \infty }^{x} {\exp \left( {\frac{\xi - x}{{e_{\lambda } a}}} \right)\varepsilon_{11} (\xi ,t)\,{\text{d}}\xi },$$
(A2)
$$\begin{gathered} T_{ + \lambda } = \frac{{\overline{\lambda }}}{{2e_{\lambda } a}}\int\limits_{x}^{\infty } {\exp \left( {\frac{x - \xi }{{e_{\lambda } a}}} \right)\varepsilon_{11} (\xi ,t)\,{\text{d}}\xi }, \hfill \\ \, \hfill \\ \end{gathered}$$
(A3)
$$T_{ - \mu } = \frac{{\overline{\mu }}}{{e_{\mu } a}}\int\limits_{ - \infty }^{x} {\exp \left( {\frac{\xi - x}{{e_{\mu } a}}} \right)\varepsilon_{11} (\xi ,t)\,{\text{d}}\xi },$$
(A4)
$$T_{ + \mu } = \frac{{\overline{\mu }}}{{e_{\mu } a}}\int\limits_{x}^{\infty } {\exp \left( {\frac{x - \xi }{{e_{\mu } a}}} \right)\varepsilon_{11} (\xi ,t)\,{\text{d}}\xi },$$
(A5)
$$T_{ - \lambda v} = \frac{{\lambda^{\prime}}}{{2e_{\lambda } a}}\int\limits_{ - \infty }^{x} {\exp \left( {\frac{\xi - x}{{e_{\lambda } a}}} \right)\dot{\varepsilon }_{11} (\xi ,t)\,{\text{d}}\xi },$$
(A6)
$$T_{ + \lambda v} = \frac{{\lambda^{\prime}}}{{2e_{\lambda } a}}\int\limits_{x}^{\infty } {\exp \left( {\frac{x - \xi }{{e_{\lambda } a}}} \right)\dot{\varepsilon }_{11} (\xi ,t)\,{\text{d}}\xi },$$
(A7)
$$T_{ - \mu v} = \frac{{\mu^{\prime}}}{{e_{\mu } a}}\int\limits_{ - \infty }^{x} {\exp \left( {\frac{\xi - x}{{e_{\mu } a}}} \right)\dot{\varepsilon }_{11} (\xi ,t)\,{\text{d}}\xi },$$
(A8)
$$T_{ + \mu v} = \frac{{\mu^{\prime}}}{{e_{\mu } a}}\int\limits_{x}^{\infty } {\exp \left( {\frac{x - \xi }{{e_{\mu } a}}} \right)\dot{\varepsilon }_{11} (\xi ,t)\,{\text{d}}\xi }.$$
(A9)

Taking the first, second, third and fourth derivatives of Eq. (A1) with respect to x, we have

$$\frac{{\partial t_{11} }}{\partial x} = \frac{1}{{e_{\lambda } a}}(T_{ + \lambda } - T_{ - \lambda } ) + \frac{1}{{e_{\mu } a}}(T_{ + \mu } - T_{ - \mu } ) + \frac{1}{{e_{\lambda } a}}(T_{ + \lambda v} - T_{ - \lambda v} ) + \frac{1}{{e_{\mu } a}}(T_{ + \mu v} - T_{ - \mu v} ),$$
(A10)
$$\begin{aligned} \frac{{\partial^{2} t_{11} }}{{\partial x^{2} }} & = - \left( {\frac{{\overline{\lambda }}}{{e_{\lambda }^{2} a^{2} }} + \frac{{2\overline{\mu }}}{{e_{\mu }^{2} a^{2} }}} \right)\varepsilon_{11} (x,t) + \frac{1}{{e_{\lambda }^{2} a^{2} }}(T_{ + \lambda } + T_{ - \lambda } ) + \frac{1}{{e_{\mu }^{2} a^{2} }}(T_{ + \mu } + T_{ - \mu } ) \\ & \quad - \left( {\frac{{\lambda^{\prime}}}{{e_{\lambda }^{2} a^{2} }} + \frac{{2\mu^{\prime}}}{{e_{\mu }^{2} a^{2} }}} \right)\dot{\varepsilon }_{11} (x,t) + \frac{1}{{e_{\lambda }^{2} a^{2} }}(T_{ + \lambda v} + T_{ - \lambda v} ) + \frac{1}{{e_{\mu }^{2} a^{2} }}(T_{ + \mu v} + T_{ - \mu v} ), \\ \end{aligned}$$
(A11)
$$\begin{aligned} \frac{{\partial^{3} t_{11} }}{{\partial x^{3} }} & = - \left( {\frac{{\overline{\lambda }}}{{e_{\lambda }^{2} a^{2} }} + \frac{{2\overline{\mu }}}{{e_{\mu }^{2} a^{2} }}} \right)\frac{{\partial \varepsilon_{11} }}{\partial x} + \frac{1}{{e_{\lambda }^{3} a^{3} }}(T_{ + \lambda } - T_{ - \lambda } ) + \frac{1}{{e_{\mu }^{3} a^{3} }}(T_{ + \mu } - T_{ - \mu } ) \\ & \quad - \left( {\frac{{\lambda^{\prime}}}{{e_{\lambda }^{2} a^{2} }} + \frac{{2\mu^{\prime}}}{{e_{\mu }^{2} a^{2} }}} \right)\frac{{\partial \dot{\varepsilon }_{11} }}{\partial x} + \frac{1}{{e_{\lambda }^{3} a^{3} }}(T_{ + \lambda v} - T_{ - \lambda v} ) + \frac{1}{{e_{\mu }^{3} a^{3} }}(T_{ + \mu v} - T_{ - \mu v} ), \\ \end{aligned}$$
(A12)
$$\begin{aligned} \frac{{\partial^{4} t_{11} }}{{\partial x^{4} }} & = - \left( {\frac{{\overline{\lambda }}}{{e_{\lambda }^{2} a^{2} }} + \frac{{2\overline{\mu }}}{{e_{\mu }^{2} a^{2} }}} \right)\frac{{\partial^{2} \varepsilon_{11} }}{{\partial x^{2} }} - \left( {\frac{{\overline{\lambda }}}{{e_{\lambda }^{4} a^{4} }} + \frac{{2\overline{\mu }}}{{e_{\mu }^{4} a^{4} }}} \right)\varepsilon_{11} + \frac{1}{{e_{\lambda }^{4} a^{4} }}(T_{ + \lambda } + T_{ - \lambda } ) + \frac{1}{{e_{\mu }^{4} a^{4} }}(T_{ + \mu } + T_{ - \mu } ) \\ & \quad - \left( {\frac{{\lambda^{\prime}}}{{e_{\lambda }^{2} a^{2} }} + \frac{{2\mu^{\prime}}}{{e_{\mu }^{2} a^{2} }}} \right)\frac{{\partial^{2} \dot{\varepsilon }_{11} }}{{\partial x^{2} }} - \left( {\frac{{\lambda^{\prime}}}{{e_{\lambda }^{4} a^{4} }} + \frac{{2\mu^{\prime}}}{{e_{\mu }^{4} a^{4} }}} \right)\dot{\varepsilon }_{11} + \frac{1}{{e_{\lambda }^{4} a^{4} }}(T_{ + \lambda v} + T_{ - \lambda v} ) + \frac{1}{{e_{\mu }^{4} a^{4} }}(T_{ + \mu v} + T_{ - \mu v} ). \\ \end{aligned}$$
(A13)

Using Eqs. (A1), (A11) and (A13) and after making some simplifications, Eq. (19) is obtained. In a similar way, Eqs. (20) and (21) are derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavanloo, E., Shaat, M. General nonlocal Kelvin–Voigt viscoelasticity: application to wave propagation in viscoelastic media. Acta Mech 233, 57–67 (2022). https://doi.org/10.1007/s00707-021-03104-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03104-3

Navigation