Skip to main content
Log in

Finite element simulation of the viscoelastic behavior of elastomers under finite deformation with consideration of nonlinear material viscosity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Governed by the diffusion process of the highly mobile and flexible polymer chains, viscoelasticity is one crucial property in modeling the finite deformation of elastomers. While the development of new constitutive models has drawn remarkable attention to reveal the underlying mechanisms of material viscosity, it becomes very challenging to predict the viscoelastic behavior of elastomers, particularly when a complex structure is undergoing non-uniform deformation. The current work attempts to fill this knowledge gap by establishing a finite element (FE) framework to numerically predict the viscoelastic behavior of elastomeric materials. In this FE framework, the micro–macro constitutive model recently proposed by Zhou et al. (J Mech Phys Solids 110:137–154, 2018. https://doi.org/10.1016/j.jmps.2017.09.016), which is capable of capturing the nonlinear viscosity and the microstructure features of the material, is implemented by developing the user-defined material (UMAT) subroutine in the software Abaqus. The developed UMAT is featured by the capability of adopting most of the constitutive relations in terms of either strain invariants or principal stretches, indicating the adaptiveness of the FE framework. The accuracy and the modeling capacity of the FE framework are validated with several numerical examples on three commonly used elastomeric materials, including VHB 4910, HNBR50, and carbon black filled elastomers, under various loading conditions. The comparison of the viscoelastic responses shows an excellent agreement between the FE modeling results and the theoretical analysis. The established FE model is expected to provide guidance for novel design and applications of elastomer-based structures. The framework can also be further extended to characterize the multiphysics coupling behaviors of elastomeric materials under coupled fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pelrine, R., Kornbluh, R.D., Pei, Q., et al.: Dielectric elastomer artificial muscle actuators: toward biomimetic motion. Smart Struct. Mater. Electroact. Polym. Actuators Dev. 4695, 126–137 (2002). https://doi.org/10.1117/12.475157

    Article  Google Scholar 

  2. Liu, Y., Liu, L., Zhang, Z., et al.: Analysis and manufacture of an energy harvester based on a Mooney-Rivlin-type dielectric elastomer. EPL (2010). https://doi.org/10.1209/0295-5075/90/36004

    Article  Google Scholar 

  3. Moretti, G., Papini, G.P.R., Righi, M., et al.: Resonant wave energy harvester based on dielectric elastomer generator. Smart Mater. Struct. (2018). https://doi.org/10.1088/1361-665X/aaab1e

    Article  Google Scholar 

  4. Kornbluh, R.D., Pelrine, R., Pei, Q., et al.: Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures. Smart Struct. Mater. Ind. Commer Appl. Smart Struct. Technol. 4698, 254–270 (2002). https://doi.org/10.1117/12.475072

    Article  Google Scholar 

  5. Mirvakili, S.M., Hunter, I.W.: Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30, 1–28 (2018). https://doi.org/10.1002/adma.201704407

    Article  Google Scholar 

  6. Yang, W.P., Chen, L.W.: The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator. Smart Mater. Struct. (2008). https://doi.org/10.1088/0964-1726/17/01/015011

    Article  Google Scholar 

  7. Hochradel, K., Rupitsch, S.J., Sutor, A., et al.: Dynamic performance of dielectric elastomers utilized as acoustic actuators. Appl. Phys. A Mater. Sci. Process. 107, 531–538 (2012). https://doi.org/10.1007/s00339-012-6837-2

    Article  Google Scholar 

  8. Ohm, C., Brehmer, M., Zentel, R.: Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010). https://doi.org/10.1002/adma.200904059

    Article  Google Scholar 

  9. Muth, J.T., Vogt, D.M., Truby, R.L., et al.: Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26, 6307–6312 (2014). https://doi.org/10.1002/adma.201400334

    Article  Google Scholar 

  10. Huang, B., Li, M., Mei, T., et al.: Wearable stretch sensors for motion measurement of the wrist joint based on dielectric elastomers. Sensors (Switzerland) (2017). https://doi.org/10.3390/s17122708

    Article  Google Scholar 

  11. Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1, 75–87 (2014). https://doi.org/10.1089/soro.2013.0009

    Article  Google Scholar 

  12. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521, 467–475 (2015). https://doi.org/10.1038/nature14543

    Article  Google Scholar 

  13. Christianson, C., Goldberg, N.N., Deheyn, D.D., et al.: Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot. 3, 1–9 (2018). https://doi.org/10.1126/SCIROBOTICS.AAT1893

    Article  Google Scholar 

  14. De Gennes, P.G.: Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–579 (1971). https://doi.org/10.1063/1.1675789

    Article  Google Scholar 

  15. Watanabe, H.: Viscoelasticity and dynamics of entangled polymers. Prog. Polym. Sci. 24, 1253–1403 (1999). https://doi.org/10.1016/S0079-6700(99)00029-5

    Article  Google Scholar 

  16. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Clarendon Press, Oxford (1986)

    Google Scholar 

  17. Straube, E., Urban, V., Pyckhout-Hintzen, W., et al.: Small-angle neutron scattering investigation of topological constraints and tube deformation in networks. Phys. Rev. Lett. 74, 964–967 (1995). https://doi.org/10.1103/PhysRevLett.74.4464

    Article  Google Scholar 

  18. Pyckhout-Hintzen, W., Westermann, S., Wischnewski, A., et al.: Direct observation of nonaffine tube deformation in strained polymer networks. Phys. Rev. Lett. 110, 1–5 (2013). https://doi.org/10.1103/PhysRevLett.110.196002

    Article  Google Scholar 

  19. Ott, M., Pérez-Aparicio, R., Schneider, H., et al.: Microscopic study of chain deformation and orientation in uniaxially strained polymer networks: NMR results versus different network models. Macromolecules 47, 7597–7611 (2014). https://doi.org/10.1021/ma5012655

    Article  Google Scholar 

  20. Lee, E.H.: Elastic–plastic deformation at finite strains. J Appl Mech 36, 1–6 (1969). https://doi.org/10.1115/1.3564580

    Article  MATH  Google Scholar 

  21. Sidoroff, F.: Un modèle viscoélastique non linéaire avec configuration intermédiaire. J. Méc 13, 679–713 (1974)

    MathSciNet  MATH  Google Scholar 

  22. Boyce, M.C., Weber, G.G., Parks, D.M.: On the kinematics of finite strain plasticity. J. Mech. Phys. Solids 37, 647–665 (1989). https://doi.org/10.1016/0022-5096(89)90033-1

    Article  MATH  Google Scholar 

  23. Bergström, J.S., Boyce, M.C.: Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46, 931–954 (1998). https://doi.org/10.1016/S0022-5096(97)00075-6

    Article  MATH  Google Scholar 

  24. Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998). https://doi.org/10.1016/s0020-7683(97)00217-5

    Article  MATH  Google Scholar 

  25. Ogden, R.W.: Large deformation isotropic elasticity- on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A 326, 565–584 (1972). https://doi.org/10.1098/rspa.1972.0026

    Article  MATH  Google Scholar 

  26. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940). https://doi.org/10.1063/1.1712836

    Article  MATH  Google Scholar 

  27. Rivlin, R.S.: Large elastic deformation of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A 241, 379–397 (1948). https://doi.org/10.1098/rsta.1948.0024

    Article  MathSciNet  MATH  Google Scholar 

  28. Yeoh, O.H.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66, 754–771 (1993). https://doi.org/10.5254/1.3538343

    Article  Google Scholar 

  29. Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–421 (1993). https://doi.org/10.1016/0022-5096(93)90013-6

    Article  MATH  Google Scholar 

  30. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996). https://doi.org/10.5254/1.3538357

    Article  Google Scholar 

  31. Wissler, M., Mazza, E.: Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sens. Actuators, A Phys. 134, 494–504 (2007). https://doi.org/10.1016/j.sna.2006.05.024

    Article  Google Scholar 

  32. Patra, K., Sahu, R.K.: A visco-hyperelastic approach to modelling rate-dependent large deformation of a dielectric acrylic elastomer. Int. J. Mech. Mater. Des. 11, 79–90 (2015). https://doi.org/10.1007/s10999-014-9270-1

    Article  Google Scholar 

  33. Linder, C., Tkachuk, M., Miehe, C.: A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity. J. Mech. Phys. Solids 59, 2134–2156 (2011). https://doi.org/10.1016/j.jmps.2011.05.005

    Article  MathSciNet  MATH  Google Scholar 

  34. Hong, W.: Modeling viscoelastic dielectrics. J. Mech. Phys. Solids 59, 637–650 (2011). https://doi.org/10.1016/j.jmps.2010.12.003

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, S., Decker, M., Henann, D.L., Chester, S.A.: Modeling of dielectric viscoelastomers with application to electromechanical instabilities. J. Mech. Phys. Solids 95, 213–229 (2016). https://doi.org/10.1016/j.jmps.2016.05.033

    Article  MathSciNet  Google Scholar 

  36. Wall, F.T.: Statistical thermodynamics of rubber. II. Chem. Phys. 10, 485–488 (1942)

    Google Scholar 

  37. Treloar, L.R.G.: Stress–strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc 40, 59–70 (1944). https://doi.org/10.1039/TF9444000059

    Article  Google Scholar 

  38. Wang, M.C., Guth, E.: Statistical theory of networks of non-gaussian flexible chains. J. Chem. Phys. 20, 1144–1157 (1952). https://doi.org/10.1063/1.1700682

    Article  MathSciNet  Google Scholar 

  39. Treloar, L.R.G., Riding, R.: A non-Gaussian theory for rubber in biaxial strain. II. Optical properties. Proc. R. Soc. London A Math. Phys. Sci. 369, 281–293 (1979). https://doi.org/10.1098/rspa.1979.0164

    Article  MATH  Google Scholar 

  40. Wu, P.D., Van Der Giessen, E.: On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J. Mech. Phys. Solids 41, 427–456 (1993). https://doi.org/10.1016/0022-5096(93)90043-F

    Article  MATH  Google Scholar 

  41. Straube, E., Urban, V., Pyckhout-Hintzen, W., Richter, D.: SANS investigations of topological constraints and microscopic deformations in rubberelastic networks. Macromolecules 27, 7681–7688 (1994). https://doi.org/10.1021/ma00104a025

    Article  Google Scholar 

  42. Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials - Part I: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004). https://doi.org/10.1016/j.jmps.2004.03.011

    Article  MathSciNet  MATH  Google Scholar 

  43. Miehe, C., Göktepe, S.: A micro-macro approach to rubber-like materials. Part II: the micro-sphere model of finite rubber viscoelasticity. J. Mech. Phys. Solids 53, 2231–2258 (2005). https://doi.org/10.1016/j.jmps.2005.04.006

    Article  MathSciNet  MATH  Google Scholar 

  44. Davidson, J.D., Goulbourne, N.C.: A nonaffine network model for elastomers undergoing finite deformations. J. Mech. Phys. Solids 61, 1784–1797 (2013). https://doi.org/10.1016/j.jmps.2013.03.009

    Article  Google Scholar 

  45. Tang, S., Steven Greene, M., Liu, W.K.: Two-scale mechanism-based theory of nonlinear viscoelasticity. J. Mech. Phys. Solids 60, 199–226 (2012). https://doi.org/10.1016/j.jmps.2011.11.003

    Article  MathSciNet  MATH  Google Scholar 

  46. Li, Y., Tang, S., Abberton, B.C., et al.: A predictive multiscale computational framework for viscoelastic properties of linear polymers. Polymer (Guildf) 53, 5935–5952 (2012). https://doi.org/10.1016/j.polymer.2012.09.055

    Article  Google Scholar 

  47. Li, Y., Tang, S., Kröger, M., Liu, W.K.: Molecular simulation guided constitutive modeling on finite strain viscoelasticity of elastomers. J. Mech. Phys. Solids 88, 204–226 (2016). https://doi.org/10.1016/j.jmps.2015.12.007

    Article  MathSciNet  Google Scholar 

  48. Zhou, J., Jiang, L., Khayat, R.E.: A micro–macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity. J. Mech. Phys. Solids 110, 137–154 (2018). https://doi.org/10.1016/j.jmps.2017.09.016

    Article  MathSciNet  Google Scholar 

  49. Simo, J.C., Taylor, R.L.: Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput. Methods Appl. Mech. Eng. 85, 273–310 (1991). https://doi.org/10.1016/0045-7825(91)90100-K

    Article  MathSciNet  MATH  Google Scholar 

  50. Holzapfel, G.A.: Nonlinear solid mechanics A continuum approach for engineering. John Wiley & Sons Ltd, Chichester (2000)

    MATH  Google Scholar 

  51. Gasser, T.C., Holzapfel, G.A.: A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: continuum basis, algorithmic formulation and finite element implementation. Comput. Mech. 29, 340–360 (2002). https://doi.org/10.1007/s00466-002-0347-6

    Article  MATH  Google Scholar 

  52. Chester, S.A., Di Leo, C.V., Anand, L.: A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels. Int. J. Solids Struct. 52, 1–18 (2015). https://doi.org/10.1016/j.ijsolstr.2014.08.015

    Article  Google Scholar 

  53. Qu, S., Suo, Z.: A finite element method for dielectric elastomer transducers. Acta Mech. Solida Sin 25, 459–466 (2012). https://doi.org/10.1016/S0894-9166(12)60040-8

    Article  Google Scholar 

  54. Naghdabadi, R., Baghani, M., Arghavani, J.: A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation. Finite Elem. Anal. Des. 62, 18–27 (2012). https://doi.org/10.1016/j.finel.2012.05.001

    Article  MathSciNet  Google Scholar 

  55. Moran, B., Ortiz, M., Shih, C.F.: Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int. J. Numer. Meth. Eng 29, 483–514 (1990). https://doi.org/10.1002/nme.1620290304

    Article  MathSciNet  MATH  Google Scholar 

  56. Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985). https://doi.org/10.1016/0045-7825(85)90033-7

    Article  MathSciNet  MATH  Google Scholar 

  57. De Souza Neto, E.A., Perić, D., Dutko, M., Owen, D.R.J.: Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int. J. Solids Struct. 33, 3277–3296 (1996). https://doi.org/10.1016/0020-7683(95)00259-6

    Article  MathSciNet  MATH  Google Scholar 

  58. de Souza Neto, E.A., Andrade Pires, F.M., Owen, D.R.J.: F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking. Int. J. Numer. Methods Eng. 62, 353–383 (2005). https://doi.org/10.1002/nme.1187

    Article  MATH  Google Scholar 

  59. Feng, Z.Q., Peyraut, F., He, Q.C.: Finite deformations of Ogden’s materials under impact loading. Int. J. Non Linear Mech. 41, 575–585 (2006). https://doi.org/10.1016/j.ijnonlinmec.2006.02.003

    Article  MATH  Google Scholar 

  60. Dui, G., Wang, X., Ren, Q.: Explicit formulations of tangent stiffness tensors for isotropic materials. Int. J. Numer. Methods Eng. 69, 665–675 (2007). https://doi.org/10.1002/nme.1776

    Article  MathSciNet  MATH  Google Scholar 

  61. Kiran, R., Khandelwal, K.: Numerically approximated Cauchy integral (NACI) for implementation of constitutive models. Finite Elem. Anal. Des. 89, 33–51 (2014). https://doi.org/10.1016/j.finel.2014.05.016

    Article  MathSciNet  Google Scholar 

  62. Connolly, S.J., Mackenzie, D., Gorash, Y.: Isotropic hyperelasticity in principal stretches: explicit elasticity tensors and numerical implementation. Comput. Mech. 64, 1273–1288 (2019). https://doi.org/10.1007/s00466-019-01707-1

    Article  MathSciNet  MATH  Google Scholar 

  63. Doll, S., Schweizerhof, K.: On the development of volumetric strain energy functions. J. Appl. Mech. 67, 17–21 (2000). https://doi.org/10.1115/1.321146

    Article  MATH  Google Scholar 

  64. Park, H.S., Suo, Z., Zhou, J., Klein, P.A.: A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers. Int. J. Solids Struct. 49, 2187–2194 (2012). https://doi.org/10.1016/j.ijsolstr.2012.04.031

    Article  Google Scholar 

  65. Nguyen, N., Waas, A.M.: Nonlinear, finite deformation, finite element analysis. Zeitschrift fur Angew Math und Phys 67, 1–24 (2016). https://doi.org/10.1007/s00033-016-0623-5

    Article  MathSciNet  MATH  Google Scholar 

  66. Bažant, Z.P., Gattu, M., Vorel, J.: Work conjugacy error in commercial finite-element codes: its magnitude and how to compensate for it. Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 3047–3058 (2012). https://doi.org/10.1098/rspa.2012.0167

    Article  MathSciNet  MATH  Google Scholar 

  67. Ji, W., Waas, A.M., Bazant, Z.P.: On the importance of work-conjugacy and objective stress rates in finite deformation incremental finite element analysis. J. Appl. Mech. Trans. ASME 80, 1–9 (2013). https://doi.org/10.1115/1.4007828

    Article  Google Scholar 

  68. Hossain, M., Vu, D.K., Steinmann, P.: Experimental study and numerical modelling of VHB 4910 polymer. Comput. Mater. Sci. 59, 65–74 (2012). https://doi.org/10.1016/j.commatsci.2012.02.027

    Article  Google Scholar 

  69. Ehret, A.E.: On a molecular statistical basis for Ogden’s model of rubber elasticity. J. Mech. Phys. Solids 78, 249–268 (2015). https://doi.org/10.1016/j.jmps.2015.02.006

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhou, J., Jiang, L, Khayat, R.E.: Erratum to “A micro-macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity” [Journal of the mechanics and physics of solids, 110 (2018) 137–154]. J. Mech. Phys. Solids 154, 104503 (2021). https://doi.org/10.1016/j.jmps.2021.104503

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Funding

This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Zhou, J., Gao, S. et al. Finite element simulation of the viscoelastic behavior of elastomers under finite deformation with consideration of nonlinear material viscosity. Acta Mech 232, 4111–4132 (2021). https://doi.org/10.1007/s00707-021-03042-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03042-0

Navigation