Skip to main content
Log in

A gradient continuous smoothed GFEM for heat transfer and thermoelasticity analyses

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A gradient continuous smoothed GFEM (SGFEM) is proposed to solve the heat transfer and thermoelasticity problem. The SGFEM is based on the idea of the PU method, whose composite shape function is composed of an element shape function and a local nodal shape function. The higher-order finite-element shape function is employed to ensure the continuity of the gradient between the elements. The local nodal shape function is obtained by introducing the gradient smoothed meshfree shape function in the Taylor expansion of the nodal function. The composite shape function satisfies many valuable properties such as the Kronecker-delta property, gradient continuity; unit decomposition and linear independence. More importantly, the SGFEM retains the Kronecker-delta property and is independent of the meshfree approximation. All these properties guarantee the excellent performance of the proposed method in practical examples. Four typical numerical examples including steady, transient heat transfer and thermoelasticity are calculated by SGFEM together with three other common numerical methods including the finite-element method with triangular element (FEM-T3), the finite-element method with quadrilateral element (FEM-Q4), and the node-based finite-element method with triangular element (NSFEM-T3). All examples demonstrate significant advantages of the SGFEM in accuracy, error convergence rate, stability and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Zemansky, M.W., Dittman, R.H.: Heat and Thermodynamics. McGraw-Hill, New York (1996)

    Google Scholar 

  2. Bathe, K.J., Saunders, H.: Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood (1984)

    Book  Google Scholar 

  3. Ma, J., Dong, S., Chen, G., et al.: A data-driven normal contact force model based on artificial neural network for complex contacting surfaces. Mech. Syst. Signal Process. 156, 107612 (2021)

    Article  Google Scholar 

  4. Ma, J., Chen, G.S., Ji, L., et al.: A general methodology to establish the contact force model for complex contacting surfaces. Mech. Syst. Signal Process. 140, 106678 (2020)

    Article  Google Scholar 

  5. Munts, E.A., Hulshoff, S.J., de Borst, R.: The partition-of-unity method for linear diffusion and convection problems: accuracy, stabilization and multiscale interpretation. Int. J. Numer. Methods Fluids 43, 199–213 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mohamed, M.S., Seaid, M., Trevelyan, J., Laghrouche, Q.: A partition of unity FEM for time-dependent diffusion problems using multiple enrichment functions. Int. J. Numer. Methods Eng. 93, 245–265 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Strouboulis, T., Babuška, I., Copps, K.: The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181(1–3), 43–69 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Strouboulis, T., Copps, K., Babuška, I.: The generalized finite element method. Comput. Methods Appl. Mech. Eng. 190(32–33), 4081–4193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Strouboulis, T., Copps, K., Babuška, I.: The generalized finite element method: an example of its implementation and illustration of its performance. Int. J. Numer. Methods Eng. 47(8), 1401–1417 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duarte, C.A., Babuška, I., Oden, J.T.: Generalized finite element methods for three-dimensional structural mechanics problems. Comput. Struct. 77(2), 215–232 (2000)

    Article  MathSciNet  Google Scholar 

  12. Duarte, C.A., Hamzeh, O.N., Liszka, T.J., et al.: A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput. Methods Appl. Mech. Eng. 190(15–17), 2227–2262 (2001)

    Article  MATH  Google Scholar 

  13. O’Hara, P., Duarte, C.A., Eason, T.: Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients. Comput. Methods Appl. Mech. Eng. 198(21–26), 1857–1871 (2009)

    Article  MATH  Google Scholar 

  14. Dong, S., Ma, J., Su, Z., et al.: Robust circular marker localization under non-uniform illuminations based on homomorphic filtering. Measurement 170, 108700 (2021)

    Article  Google Scholar 

  15. Iqbal, M., Masood, K., et al.: Generalized finite element method with time-independent enrichment functions for 3D transient heat diffusion problems. Int. J. Heat Mass Transf. 149, 969–981 (2020)

    Article  Google Scholar 

  16. Iqbal, M., Alam, K., et al.: Effect of enrichment functions on GFEM solutions of time dependent conduction heat transfer problems. Appl. Math. Model. 85, 86–106 (2020)

    Article  MathSciNet  Google Scholar 

  17. Babuska, I., Melenk, J.M.: Partition of unity method. Int. J. Numer. Methods Eng. 40, 727 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Taylor, R.L., Zienkiewicz, O.C., Onate, E.: A hierarchical finite element method based on the partition of unity. Comput. Methods Appl. Mech. Eng. 152, 73–84 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tian, R., Yagawa, G., Terasaka, H.: Linear dependence problems of partition of unity-based generalized FEMs. Comput. Methods Appl. Mech. Eng. 195(37–40), 4768–4782 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tian, R.: Extra-dof-free and linearly independent enrichments in GFEM. Comput. Methods Appl. Mech. Eng. 266, 1–22 (2013)

    Article  MATH  Google Scholar 

  22. Rajendran, S., Zhang, R.B.A.: “FE-Meshfree” QUAD4 element based on partition of unity. Comput. Methods Appl. Mech. Eng. 197, 128–147 (2007)

    Article  MATH  Google Scholar 

  23. Zhang, B.R., Rajendran, S.: ‘“FE-Meshfree”’ QUAD4 element for free vibration analysis. Comput. Methods Appl. Mech. Eng. 197, 3595–3604 (2008)

    Article  MATH  Google Scholar 

  24. Rajendran, S., Zhang, B.R., et al.: A partition of unity-based ’FE-Meshfree’ QUAD4 element for geometric non-linear analysis. Comput. Methods Appl. Mech. Eng. 82, 1574–1608 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Ooi, E.T., Rajendran, S., et al.: A mesh distortion tolerant 8-node solid element based on the partition of unity method with inter-element compatibility and completeness properties. Finite Elem. Anal. Des. 43, 771–787 (2007)

    Article  Google Scholar 

  26. Xu, J.P., Rajendran, S.: A partition-of-unity based ‘FE-Meshfree’ QUAD4 element with radial-polynomial basis functions for static analyses. Comput. Methods Appl. Mech. Eng. 200(47–48), 3309–3323 (2011)

    Article  MATH  Google Scholar 

  27. Yang, Y.T., Tang, X.H., et al.: A three-node triangular element with continuous nodal stress. Comput. Struct. 141, 46–58 (2014)

    Article  Google Scholar 

  28. Yang, Y.T., Xu, D.D., et al.: A partition-of-unity based ‘FE-Meshfree’ triangular element with radial-polynomial basis functions for static and free vibration analysis. Eng. Anal. Boundary Elem. 65, 18–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, Y.T., Chen, L., et al.: A partition-of-unity based ‘FE-Meshfree’ hexahedral element with continuous nodal stress. Comput. Struct. 178, 17–28 (2017)

    Article  Google Scholar 

  30. Chen, G.S., Qian, L.F., et al.: Smoothed FE-Meshfree method for solid mechanics problems. Acta Mech. 229, 2597–2618 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cai, Y., Zhuang, X., Augarde, C.: A new partition of unity finite element free from the linear dependence problem and possessing the delta property. Comput. Methods Appl. Mech. Eng. 199(17–20), 1036–1043 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, G.R.: A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int. J. Comput. Methods 5(02), 199–236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, J.S., Wu, C.T., Yoon, S., et al.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50(2), 435–466 (2001)

    Article  MATH  Google Scholar 

  34. Liu, G.R., Nguyen-Thoi, T., Nguyen-Xuan, H., Lam, K.Y.: A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput. Struct. 87, 14–26 (2009)

    Article  Google Scholar 

  35. Liu, G.R., Nguyen, T.T., Lam, K.Y.: An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J. Sound Vib. 320(4), 1100–1130 (2009)

    Article  Google Scholar 

  36. Feng, S.Z., Cui, X.Y., Li, G.Y.: Analysis of transient thermo-elastic problems using edge-based smoothed finite element method. Int. J. Therm. Sci. 65, 127–135 (2013)

    Article  Google Scholar 

  37. Feng, S.Z., Cui, X.Y., Li, G.Y.: Transient thermal mechanical analyses using a face based smoothed finite element method (FS-FEM). Int. J. Therm. Sci. 74, 95–103 (2013)

    Article  Google Scholar 

  38. Liu, G.R., Nguyen-Thoi, T.: Smoothed Finite Element Methods. CRC Press, Boca Raton (2010)

    Google Scholar 

  39. Beissel, S., Belytschko, T.: Nodal integration of the elementfree Galerkin method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)

    Article  MATH  Google Scholar 

  40. Zhang, Z.Q., Liu, G.R.: Temporal stabilization of the node-based smoothed finite element method and solution bound of linear elastostatics and vibration problems. Comput. Mech. 46, 229–246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, G., Cui, X.Y., Li, G.Y.: Temporal stabilization nodal integration method for static and dynamic analyses of Reissner-Mindlin plates. Comput. Struct. 152, 125–141 (2015)

    Article  Google Scholar 

  42. Cui, X.Y., Li, Z.C., et al.: Steady and transient heat transfer analysis using a stable node-based smoothed finite element method. Int. J. Therm. Sci. 110, 12–25 (2016)

    Article  Google Scholar 

  43. Feng, H., Cui, X.Y., Li, G.Y., et al.: A temporal stable node-based smoothed finite element method for three-dimensional elasticity problems. Comput. Mech. 53(5), 859–876 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, G.R., Nguyen, T.T., Lam, K.Y.: A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Comput. Methods Appl. Mech. Eng. 197(45), 3883–3897 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu, G.R., Gu, Y.T.: An Introduction to Meshfree Methods and Their Programming. Springer, New York (2005)

    Google Scholar 

  46. Golberg, M.A., Chen, C.S., et al.: Some recent results and proposals for the use of radial basis functions in the BEM. Eng. Anal. Boundary Elem. 23, 285–296 (1999)

    Article  MATH  Google Scholar 

  47. Chen, G.S., Qian, L.F., Ma, J.: A gradient stable node-based smoothed finite element method for solid mechanics problems. Shock. Vib. 2019, 1–24 (2019)

    Article  Google Scholar 

  48. Mohamed, M.S., Seaid, M., Bouhamidi, A.: Iterative solvers for generalized finite elementsolution of boundary-value problems. Numer Linear Algebra Appl. 25, e2205 (2018)

    Article  MATH  Google Scholar 

  49. Lee, C., Lee, P.S.: A new strain smoothing method for triangular and tetrahedral finite elements. Comput. Methods Appl. Mech. Eng. 341, 939–955 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lee, C., Kim, C., Lee, P.S.: The strain-smoothed 4-node quadrilateral finite element. Comput. Methods Appl. Mech. Eng. 373, 113481 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  51. Duan, Q.L., Wang, B.B., Gao, X., et al.: Quadratically consistent nodal integration for second order meshfree Galerkin methods. Comput. Mech. 54, 353–368 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11472137) and the Fundamental Research Funds for the Central Universities (Grant Nos. 309181A8801 and 30919011204). We would also like to appreciate Ms. Cui Zhenqi from Nanjing University of Science and Technology, who checked the writing of our manuscript and put forward valuable suggestions during our revision process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangsong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Qian, L. & Chen, G. A gradient continuous smoothed GFEM for heat transfer and thermoelasticity analyses. Acta Mech 232, 3737–3765 (2021). https://doi.org/10.1007/s00707-021-03018-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03018-0

Navigation