Skip to main content

Element-Free Discretization Method with Moving Finite Element Approximation

  • Conference paper
  • First Online:
Computational and Experimental Simulations in Engineering (ICCES 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 98))

  • 732 Accesses

Abstract

The popularity of standard Finite Element Method (FEM) results from its simplicity and wide applicability in engineering computations. The simplicity consists in polynomial interpolation of field variables within finite elements, while the wide applicability in rather close similarity of engineering problems based mostly on variational formulations. On the other hand, the standard FEM suffers from limited continuity on element intersections, global meshing difficulty in analysis of complex geometry, and global equations may not be parallelized efficiently. All these shortcomings can be removed in the mesh free formulations, where the arbitrary net of nodal points is used for discretization instead of subdivision of the analyzed domain into finite elements. The spatial approximations based on cluster of nodes are not expressed in terms of elementary functions and evaluation of the shape functions prolongs the computation. To get rid of disadvantages of the standard FEM and mesh free formulations, the moving finite element (MFE) method has been proposed. In this paper, we pay attention to explanation of the basis of the MFE approximation and to its combination with the strong as well as local weak formulations of boundary value problems for stationary heat conduction in solids with functionally graded heat conduction coefficient. Finally, in numerical test examples the reliability (accuracy and numerical stability) and computational efficiency are compared for three variants of the MFE method and the standard FEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zienkiewicz, O.C., Taylor, R.I.: The Finite Element Method, 6th edn. Butterworth-Heinemann, Oxford (2005)

    MATH  Google Scholar 

  2. Hughes, T.J.R.: The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-Hall Inc., Englewood Clifs (1987)

    MATH  Google Scholar 

  3. Kolditz, O.: Computational Methods in Environmental Fluid Mechanics. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  4. LeVeque, R.J.: Finite-Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  5. Yagawa, G., Furukawa, T.: Recent developments of free mesh method. Int. Jour. Num. Meth. Engng. 47, 1419–1443 (2000)

    Article  MATH  Google Scholar 

  6. Atluri, S.N., Shen, S.: The Meshless Local Petrov-Galerkin (MLPG) Method. Tech Science Press, Encino (2002)

    MATH  Google Scholar 

  7. Atluri, S.N.: The Meshless Method (MLPG) for Domain & BIE Discretizations. Tech Science Press, Forsyth (2004)

    MATH  Google Scholar 

  8. Liu, G.R.: Mesh Free Methods, Moving Beyond the Finite Element Method. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  9. Liu, G.R.: An overview on meshfree methods: for computational solid mechanics. Int. J. Comput. Meth. 13, 1630001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79, 763–813 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sladek, J., Stanak, P., Han, Z.D., Sladek, V., Atluri, S.N.: Applications of the MLPG method in engineering & sciences: a review. CMES 92, 423–475 (2013)

    Google Scholar 

  12. Yagawa, G., Yamada, T.: Free mesh method: a new meshless finite element method. Comput. Mech. 18, 383–386 (1996)

    Article  MATH  Google Scholar 

  13. Kobayashi, Y., Shioya, R., Yagawa, G.: Parallel eigen frequency analysis using enriched free mesh method. Key Eng. Mater. 462–463, 628–633 (2011)

    Article  Google Scholar 

  14. Sladek, V., Sladek, J., Zhang, Ch.: Local integro-differential equations with domain elements for the numerical solution of partial differential equations with variable coefficients. Jour. Eng. Math. 51, 261–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sladek, V., Sladek, J., Zhang, Ch.: Computation of stresses in non-homogeneous elastic solids by local integral equation method. Comput. Mech. 41, 827-845 (2008)

    Google Scholar 

  16. Sladek, V., Sladek, J., Zhang, Ch.: The use of finite elements for approximation of field variables on local subdomains in a mesh-free way. Chapter 6 In: Kompis, V. (ed.) Composites with Micro- and Nano-Structure, pp. 87–106. Springer, Heidelberg (2008)

    Google Scholar 

  17. Sladek, V., Repka, M., Sladek, J.: Moving finite element method. WIT Trans. Eng. Sci. 122, 119–129 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sladek, V., Sladek, J., Repka, M.: Mesh-free analysis of plate bending problems by Moving finite element approximation. WIT Trans. Eng. Sci. 126, 211–223 (2019)

    Article  MATH  Google Scholar 

  19. Sladek, V., Sladek, J., Repka, M., Sator, L.: FGM micro/nano-plates within modified couple stress elasticity. Compos. Struct. 245, 112294 (2020)

    Article  Google Scholar 

  20. Gao, X.W., Huang, S.Z., Cui, M., et al.: Element differential method for solving general heat conduction problems. Int. J. Heat Mass transfer 115, 882–894 (2017)

    Article  Google Scholar 

  21. Gao, X.W., Li, Z.Y., Yang, K., et al.: Element differential method and its application in thermal-mechanical problems. Int. J. Num. Meth. Eng. 113, 82–108 (2018)

    Article  MathSciNet  Google Scholar 

  22. Wen, P.H., Cao, P., Korakianitis, T.: Finite block method in elasticity. Eng. Anal. Bound. Elem. 46, 116–125 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, M., Wen, P.H.: Finite block method for transient heat conduction analysis in functionally graded media. Int. J. Num. Meth. Eng. 99, 372–390 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fantuzzi, N., Tornabene, F.: Strong formulation finite element method for arbitrarily shaped laminated plates—part I. Theoretical analysis. Adv. Aircr. Spacecr. Sci. 1, 125–143 (2014)

    Article  Google Scholar 

  25. Fantuzzi, N.: New insight into the strong formulation finite element method for solving elastostatic and elastodynamic problems. Curved Layer Struct. 1, 93–126 (2014)

    Google Scholar 

  26. Tornabene, F., Fantuzzi, N., Ubertini, F., Viola, E.: Strong formulation finite element method based on differential quadrature: a survey. Appl. Mech. Rev. 1, 145–175 (2015)

    Google Scholar 

  27. Gao, X.W., Gao, L.F., Zhang, Y., Cui, M., Lv, J.: Free element collocation method: a new method combining advantages of finite element and mesh free methods. Comput. Struct. 215, 10–26 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the Slovak Science and Technology Assistance Agency registered under number SK-CN-RD-18-0005 and VEGA-2/0061/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Sladek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sladek, V., Sladek, J. (2021). Element-Free Discretization Method with Moving Finite Element Approximation. In: Atluri, S.N., Vušanović, I. (eds) Computational and Experimental Simulations in Engineering. ICCES 2021. Mechanisms and Machine Science, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-67090-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67090-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67089-4

  • Online ISBN: 978-3-030-67090-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics