Skip to main content
Log in

Generalized Emden–Fowler equations related to constant curvature surfaces and noncentral curl forces

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A noncentral force is a prototypical example of nonconservative position dependent force, known as curl force; this terminology was first proposed by Berry and Shukla in [1]. In this paper, we extend the construction of a noncentral force on the Euclidean plane to constant curvature spaces. It is known that the angular momentum is not conserved in a noncentral setting; we take angular momentum and integral torque to be two independent coordinates and study two different reductions of noncentral forces using these two new variables. These lead to the curvature-dependent generalized Emden–Fowler and generalized Lane–Emden equations. These reduce to the standard form of the Emden–Fowler and Lane–Emden equations when the curvature vanishes. We compute all the generalized Emden–Fowler equations based on polynomial noncentral forces. Finally, we also give a brief outline of our construction for nonpolynomial forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berry, M.V., Shukla, P.: Classical dynamics with curl forces, and motion driven by time-dependent flux. J. Phys. A 45, 305201 (2012)

    Article  MathSciNet  Google Scholar 

  2. Berry, M.V., Shukla, P.: Hamiltonian curl forces. Proc. R. Soc. A 471:20150002 (13pp), (2015)

  3. Berry, M.V., Shukla, P.: Physical curl forces: dipole dynamics near optical vortices. J. Phys. A 46, 422001 (2013)

    Article  MathSciNet  Google Scholar 

  4. Chaumet, P.C., Nieto-Vesperinas, M.: Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett. 25, 1065–1067 (2013)

    Article  Google Scholar 

  5. Albaladejo, S., Marqués, M.I., Laroche, M., Sáenz, J.J.: Scattering forces from the curl of the spin angular momentum. Phys. Rev. Lett. 102, 113602 (2009)

    Article  Google Scholar 

  6. Shimizu, Y., Sasada, H.: Mechanical force in laser cooling and trapping. Am. J. Phys. 66, 960–967 (1998)

    Article  Google Scholar 

  7. Gutzwiller, M.C.: The anistropic kepler problem in two dimensions. J. Math. Phys. 14, 139–152 (1973)

    Article  Google Scholar 

  8. Devaney, R.L.: Nonregularizability of the anisotropic kepler problem. J. Diff. Eqns. 29, 253 (1978)

    Article  MathSciNet  Google Scholar 

  9. Ghose-Choudhury, A., Guha, P., Paliathanasis, A., Leach, P.G.L.: Noetherian symmetries of noncentral forces with drag term. Int. J. Geom. Methods Mod. Phys. 14, 1750018 (2017)

    Article  MathSciNet  Google Scholar 

  10. Guha, P.: Generalized Emden-Fowler equations in noncentral curl forces and first integrals. Acta Mech. 231, 815–825 (2020)

    Article  MathSciNet  Google Scholar 

  11. Guha, P.: Saddle in linear curl forces, cofactor systems and holomorphic structure. Eur. Phys. J. Plus 133, 536 (2018)

    Article  Google Scholar 

  12. Guha, P.: Curl forces and their role in optics and ion trapping. Eur. Phys. J. D 74, 99 (2020)

    Article  Google Scholar 

  13. Chandrasekar, S.: An Introduction to the Study of Stellar Structure. Dover, New York (1957)

    Google Scholar 

  14. Richardson, O.U.: The Emission of Electricity from Hot Bodies. Longman. Green and Co., New York (1921)

    Google Scholar 

  15. Davis, H.T.: Introduction to Nonlinear Differential and Integral Equations. Dover, New York (1962)

    Google Scholar 

  16. Goenner, H., Havas, P.: Exact solutions of the generalized Lane- Emden equation. J. Math. Phys. 41, 7029 (2000)

    Article  MathSciNet  Google Scholar 

  17. Mancas, S.C., Rosu, H.C.: Existence of periodic orbits in nonlinear oscillators of Emden-Fowler form. Phys. Letts A 380, 422–428 (2016)

    Article  MathSciNet  Google Scholar 

  18. Mancas, S.C., Rosu, H.C.: Two integrable classes of Emden-Fowler equations with applications in astrophysics and cosmology. Zeitschrift für Naturforschung A 73(9), 805–814 (2018)

    Article  Google Scholar 

  19. Wong, J.S.W.: On the generalized Emden-Fowler equation. SIAM Rev. 17, 339 (1975)

    Article  MathSciNet  Google Scholar 

  20. Lane, J.H.: On the theoretical temperature of the sun under the hypothesis of a gaseous mass maintaining its volume by its internal heat and depending on the laws of gases known to terrestial experiment. Am. J. Sci. Arts 4, 57–74 (1870)

    Article  Google Scholar 

  21. Emden, R.: Gaskugeln, Anwendungen der mechanischen Warmen-theorie auf Kosmologie und meteorologische Probleme. Teubner, Leipzig (1907)

  22. Fowler, R.H.: Further studies of Emden’s and similar differential equations. Q. J. Math. 2(1), 259–288 (1931)

    Article  Google Scholar 

  23. Böhmer, C.G., Harko, T.: Nonlinear stability analysis of the Emden-Fowler equation. J. Nonlinear Math. Phys. 17(4), 503–516 (2010)

    Article  MathSciNet  Google Scholar 

  24. Djukic, D.S.: A procedure for finding first integrals of mechanical systems with gauge-variant Lagrangians. Int. J. Non-Linear Mech. 8, 479–488 (1973)

    Article  MathSciNet  Google Scholar 

  25. Crespo Da Silva, M.R.M.: A transformation approach for finding first integrals of dynamical systems. Int. J. Non-Linear Mech. 9, 241–250 (1974)

    Article  MathSciNet  Google Scholar 

  26. Rosenau, P.: A note on the integration of the Emden-Fowler equation. Int. J. Non-Linear Mech. 19, 303–308 (1984)

    Article  MathSciNet  Google Scholar 

  27. Guha, P., Choudhury, G.: Generalized Ermakov-Pinney and Emden-Fowler equations. Nonlinear Dyn. Syst. Theory. 14, 355–370 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Rosu, H., Mancas, S.: Generalized Thomas-Fermi equations as the Lampariello class of Emden-Fowler equations. Physica A: Stat. Mech. Appl. 471, 212–218 (2017)

    Article  MathSciNet  Google Scholar 

  29. Lobachevskij, N.I.: 1949, In Collected Works (GITTL. Moscow 2, 159 (1949)

  30. Serret 1860, Théorie nouvelle géometrique et mécanique des lignes a double Pcourbure, (Librave de Mallet-Bachelier: Paris, 1860)

  31. Killing, W.: Die mechanik in den nicht-Euklidischen raumformen. J. Reine Angew. Math. 98, 1–48 (1885)

    MathSciNet  MATH  Google Scholar 

  32. Liebmann, H.: Uber die Zentralbewegung in der Nichteuklidische Geometrie. Leipzig Ber. 55, 146–153 (1903)

    Google Scholar 

  33. Carinena, J.F., Ranada, M.F., Santander, M.: Central potentials on spaces of constant curvature: the Kepler problem on the two-dimensional sphere S2 and the hyperbolic plane H2. J. Math. Phys. 46, 052702 (2005)

    Article  MathSciNet  Google Scholar 

  34. Ballesteros, A., Herranz, F.J.: Maximal superintegrability of the generalized Kepler-Coulomb system on N-dimensional curved spaces. J. Phys. A: Math. Theor. 42, 245203 (2009)

    Article  MathSciNet  Google Scholar 

  35. Ballesteros, A., Blasco, A., Herranz, F.J., Musso, F.: A new integrable anisotropic oscillator on the two- dimensional sphere and the hyperbolic plane. J. Phys. A Math. Theor 47, 345204 (2014). (21pp)

    Article  MathSciNet  Google Scholar 

  36. Ballesteros, A., Encisco, A., Herranz, F.J., Ragnisco, O.: Superintegrability on N-dimensional curved spaces: central potentials, centrifugal terms and monopoles. Ann. Phys. 324, 1219–1233 (2009)

    Article  MathSciNet  Google Scholar 

  37. Diacu, F.: On the singularities of the curved n-body problem. Trans. Amer. Math. Soc. 363(4), 2249–2264 (2011)

    Article  MathSciNet  Google Scholar 

  38. Diacu, F., Perez-Chavela, E., Santoprete, M.: (2008) The n-body problem in spaces of constant curvature, arXiv preprint arXiv:0807.1747

Download references

Acknowledgements

I am immensely grateful to Professor Sir Michael Berry for his valuable remarks. I am also grateful to Haret Rosu for his suggestions and comments. I am also indebted to Professors Praghya Shukla, Stefan Mancas and Anindya Ghose–Choudhury for various discussions and correspondences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Guha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guha, P. Generalized Emden–Fowler equations related to constant curvature surfaces and noncentral curl forces. Acta Mech 232, 3381–3391 (2021). https://doi.org/10.1007/s00707-021-02998-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02998-3

Mathematics Subject Classification

Navigation