Skip to main content
Log in

Peridynamics for fluid mechanics and acoustics

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Peridynamic governing equations of fluid mechanics for barotropic flow are developed. As a special case of such a flow, linearized acoustics is also considered. The peridynamic governing equation of acoustics is also developed and discussed in detail. In order to obtain these new peridynamic governing equations, integral operators called “peridynamic D operators” are developed systematically, which are obtained by directly requiring the peridynamic D operators to converge to corresponding classical differential operators as the generalized material horizon approaches 0. Even though peridynamic D operators are applied only to fluid mechanics, acoustics, and heat conduction in an anisotropic inhomogeneous material in the present paper, it is clear that these peridynamic D operators can be used in any other field of mathematical physics to obtain a peridynamic (nonlocal) version of the governing equations. As an application of the newly obtained peridynamic governing equations, a time-dependent 3D (three-dimensional) peridynamic acoustics equation with a sound source is analytically solved for two different initial pressure disturbance profiles, and the results are discussed. These are believed to be the first exact analytical solutions for peridynamic acoustics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Madenci, E., Oterkus, E.: Peridynamic Theory and Its Applications. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  3. Silling, S.A., Zimmermann, M., Abeyaratne, R.: Deformation of a peridynamic bar. J. Elast. 73, 173–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Weckner, O., Abeyaratne, R.: The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53, 705–728 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Silling, S.A., Askari, E.E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)

    Article  Google Scholar 

  6. Silling, S.A., Epton, M., Weckner, O., Xu, J.,·Askari, E.: Peridynamic States and constitutive modeling. J. Elasticity 88, 151–184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demmie, P.N., Silling, S.A.: An approach to modeling extreme loading of structures using peridynamics. J. Mech. Mater. Struct. 2(10), 1921–1945 (2007)

    Article  Google Scholar 

  8. Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237(12–13), 1250–1258 (2007)

    Article  Google Scholar 

  9. Askari, E., Bobaru, F., Lehoucq, R.B., Parks, M.L., Silling, S.A., Weckner, O.: Peridynamics for multiscale materials modeling. J. Phys: Conf. Ser. 125, 012078 (2008)

    Google Scholar 

  10. Gerstle, W., Silling, S., Read, D., Tewary, V., Lehoucq, R.: Peridynamic simulation of electromigration. Comput. Mater. Continua 8, 75–92 (2008)

    Google Scholar 

  11. Parks, M.L., Lehoucq, R.B., Plimpton, S.J., Silling, S.A.: Implementing peridynamics within a molecular dynamics code. Comput. Phys. Commun. 179(11), 777–783 (2008)

    Article  MATH  Google Scholar 

  12. Warren, T.L., Silling, S.A., Askari, A., Weckner, O., Epton, M.A., Xu, J.: A non-ordinary state-based peridynamic method to model solid material deformation and fracture. Int. J. Solids Struct. 46, 1186–1195 (2009)

    Article  MATH  Google Scholar 

  13. Foster, J.T., Silling, S.A., Chen, W.W.: Viscoplasticity using peridynamics. Int. J. Numer. Methods. Eng. 81, 1242–1258 (2009)

    Article  MATH  Google Scholar 

  14. Kilic, B., Madenci, E.: Structural stability and failure analysis using peridynamic theory. Int. J. Non-Linear Mech. 44, 845–854 (2009)

    Article  MATH  Google Scholar 

  15. Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162, 229–244 (2010)

    Article  MATH  Google Scholar 

  16. Silling, S.A., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010)

    Article  MATH  Google Scholar 

  17. Bobaru, F., Duangpanya, M.: The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Transf. 53, 4047–4059 (2010)

    Article  MATH  Google Scholar 

  18. Mikata, Y.: Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod. Int. J. Solids Struct. 49, 2887–2897 (2012)

    Article  Google Scholar 

  19. Bobaru, F., Duangpanya, M.: A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J. Comput. Phys. 231, 2764–2785 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mikata, Y.: Dispersion relations of 1D and 3D peridynamics. In: ASME IMECE2013-65837.

  21. Buryachenko, V.A.: Effective elastic modulus of heterogeneous peristatic bar of random structure. Int. J. Solids Struct. 51, 2940–2948 (2014)

    Article  Google Scholar 

  22. Ghajari, M., Iannucci, L., Curtis, P.: A peridynamic model for the analysis of dynamic crack propagation in orthotropic media. Comput. Methods Appl. Mech. Eng. 276, 431–452 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Galvanetto, U., Mudric, T., Shojaei, A., Zaccariott, M.: An effective way to couple FEM meshes and peridynamics grids for the solution of static equilibrium problems. Mech. Res. Commun. 76, 41–47 (2016)

    Article  Google Scholar 

  24. De Meo, D., Diyaroglu, C., Zhu, N., Oterkus, E., Siddiq, M.A.: Modelling of stress-corrosion cracking by using peridynamics. Int. J. Hydrogen Energy 41(15), 6593–6609 (2016)

    Article  Google Scholar 

  25. Diyaroglu, C., Oterkus, S., Oterkus, E., Madenci, E.: Peridynamic modeling of diffusion by using finite element analysis. IEEE Trans. Components Packag. Manuf. Technol. 7, 1823–1831 (2017)

    Article  Google Scholar 

  26. Oterkus, S., Madenci, E., Oterkus, E.: Fully coupled poroelastic peridynamic formulation for fluid-filled fractures. Eng. Geol. 225, 19–28 (2017)

    Article  MATH  Google Scholar 

  27. Mikata, Y.: Linear peridynamics in isotropic and anisotropic materials. Int. J. Solids Struct. 158, 116–127 (2019)

    Article  Google Scholar 

  28. Mikata, Y.: Linear peridynamics for triclinic materials. Math. Mech. Solids. Epub ahead of print (2020). https://doi.org/10.1177/1081286520969880

  29. Mikata, Y.: Peridynamics for heat conduction. ASME J. Heat Transf. 142, 081402 (2020)

    Article  Google Scholar 

  30. Turner, D.Z.: A non-local model for fluid-structure interaction with applications in hydraulic fracturing. Int. J. Comput. Methods Eng. Sci. Mech. 14, 391–400 (2013)

    Article  MathSciNet  Google Scholar 

  31. Katiyar, A., Foster, J.T., Ouchi, H., Sharma, M.M.: A peridynamic formulation of pressure driven convective fluid transport in porous media. J. Comput. Phys. 261, 209–229 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ouchi, H., Katiyar, A., York, J., Foster, J.T., Sharma, M.M.: A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach. Comput. Mech. 55(3), 561–576 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cosserat, E., Cosserat, F.: Theorie Des Corps Deformables. Hermann, Paris (1909)

    MATH  Google Scholar 

  34. Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–742 (1967)

    Article  MATH  Google Scholar 

  35. Kröner, E.: Interrelations between various branches of continuum mechanics. In: Kröner, E. (ed.) Generalized Mechanics of Continua, pp. 330–340. Springer, Berlin (1968)

    Chapter  Google Scholar 

  36. Kröner, E., Datta, B.K.: Nichtlokale Elastostatik: Ableitung aus der Gittertheorie. Z. Phys. 196, 203–211 (1966)

    Article  Google Scholar 

  37. Luciani, J.F., Mora, P., Virmont, J.: Nonlocal heat transport due to steep temperature gradients. Phys. Rev. Lett. 51(18), 1664–1667 (1983)

    Article  Google Scholar 

  38. Mahan, G.D., Claro, F.: Nonlocal theory of thermal conductivity. Phys. Rev. B 38(3), 1963–1969 (1988)

    Article  Google Scholar 

  39. Sobolev, S.L.: Equations of transfer in non-local media. Int. J. Heat Mass Transf. 37(14), 2175–2182 (1994)

    Article  MATH  Google Scholar 

  40. Grmela, M., Lebon, G.: Finite-speed propagation of heat: a nonlocal and nonlinear approach. Phys. A 248, 428–441 (1998)

    Article  Google Scholar 

  41. Pickens, J.F., Grisak, G.E.: Scale-dependent dispersion in a stratified granular aquifer. Water Resource Res. 17, 1191–1211 (1981)

    Article  Google Scholar 

  42. Koch, D.L., Brady, J.F.: A non-local description of advection-diffusion with application to dispersion in porous media. J. Fluid Mech. 180, 387–403 (1987)

    Article  MATH  Google Scholar 

  43. Koch, D.L., Brady, J.F.: Anomalous diffusion in heterogeneous porous media. Phys. Fluids 31, 965–973 (1988)

    Article  MATH  Google Scholar 

  44. Metzler, R., Glöckle, W.G., Nonnenmacher, T.F.: Fractional model equation for anomalous diffusion. SPhys. A Stat. Mech. Appl. 211, 13–24 (1994)

    Article  Google Scholar 

  45. Serrano, S.E.: Forecasting scale-dependent dispersion from spills in heterogeneous aquifers. J. Hydrol. 169, 151–169 (1995)

    Article  Google Scholar 

  46. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sen, M., Ramos, E.: A spatially non-local model for flow in porous media. Transp. Porous Media 92, 29–39 (2012)

    Article  MathSciNet  Google Scholar 

  48. Pierce, A.D.: Acoustics: An Introduction to Its Physical Principles and Applications. Acoustical Society of America, Melville (1989)

    Google Scholar 

  49. Howe, M.S.: Theory of Vortex Sound. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  50. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  51. Mikata, Y., Achenbach, J.D.: Reflection and transmission by an infinite array of randomly oriented cracks. J. Acoust. Soc. Am. 83, 38–45 (1988)

    Article  Google Scholar 

  52. Mikata, Y.: SH-waves in a medium containing a disordered periodic array of cracks. ASME J. Appl. Mech. 62(2), 312–319 (1995)

    Article  MATH  Google Scholar 

  53. Aki, K., Richards, P.G.: Quantitative Seismology. University Science Books, Herndon (2002)

    Google Scholar 

  54. The Clay Mathematics Institute of Cambridge, Massachusetts (CMI) (2000)s. www.claymath.org/millennium-problems/millennium-prize-problems, May 24, 2000, Collége de France, Paris.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yozo Mikata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yozo Mikata: ASME Fellow.

Appendices

Appendix 1: Convergence proof of peridynamic barotropic fluid mechanics to classical barotropic fluid mechanics

Let us first note that the Navier–Stokes equation (1) can be written as

$$ \rho \frac{{\partial {\varvec{v}}}}{\partial t} = - \nabla p^{\prime} + \mu \nabla^{2} \user2{v + }(\mu + \lambda )\nabla (\nabla \bullet {\varvec{v}}) - \rho ({\varvec{v}} \bullet \nabla ){\varvec{v}} + \rho {\varvec{b}}, $$
(70)

We would like to prove that the peridynamic Navier–Stokes equation (7) and the peridynamic continuity equation (8) approach the classical Navier–Stokes equation (70) and the classical continuity equation (2), respectively, in the limit of the material horizon \(\delta\) going to zero (\(\delta \to 0\)). First, we start with (7) and (70). Since the left-hand side (L.H.S) of both (7) and (70) is the same, we only need to show that the right-hand side (R.H.S) of (7) approaches the R.H.S of (70) in the limit of the material horizon \(\delta\) going to zero (\(\delta \to 0\)). In other words, we need to show that

$$ \int_{ - \infty }^{\infty } {\tilde{\user2{C}}({\varvec{\xi}})({\varvec{v}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{v}}({\varvec{x}},t))d{\varvec{\xi}}} \to \mu \nabla^{2} \user2{v + }(\mu + \lambda )\nabla (\nabla \bullet {\varvec{v}}), $$
(71)
$$ {\begin{aligned} & \int_{ - \infty }^{\infty } {{\varvec{C}}_{G} ({\varvec{\xi}})(p^{\prime}({\varvec{x}} + {\varvec{\xi}},t) - p^{\prime}({\varvec{x}},t))d{\varvec{\xi}}} \to \nabla p^{\prime}({\varvec{x}},t), \\ & \int_{ - \infty }^{\infty } {C_{CV} ({\varvec{\xi}},{\varvec{v}}({\varvec{x}},t))({\varvec{v}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{v}}({\varvec{x}},t))d{\varvec{\xi}}} \to ({\varvec{v}} \bullet \nabla ){\varvec{v}} \\ \end{aligned}} $$
(72)

in the limit of \(\delta \to 0\). It is noted here that the Navier–Stokes equation (70) is very similar to Navier’s equation for isotropic elastodynamics,

$$ \rho \frac{{\partial {\varvec{u}}}}{\partial t} = \mu \nabla^{2} \user2{u + }(\mu + \lambda )\nabla (\nabla \bullet {\varvec{u}}) + \rho {\varvec{b}}, $$
(73)

where \({\varvec{u}}\) is a displacement vector. It has been rigorously shown (Mikata [26]) that the peridynamic Navier’s equation is given by

$$ \rho \frac{{\partial {\varvec{u}}}}{\partial t} = \int_{ - \infty }^{\infty } {\tilde{\user2{C}}({\varvec{\xi}})({\varvec{u}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{u}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}} + \rho {\varvec{b}} $$
(74)

where \(\tilde{\user2{C}}({\varvec{\xi}})\) is the same \(\tilde{\user2{C}}({\varvec{\xi}})\) defined in (10). In other words, it has been proved that

$$ \int_{ - \infty }^{\infty } {\tilde{\user2{C}}({\varvec{\xi}})({\varvec{u}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{u}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}} \to \mu \nabla^{2} \user2{u + }(\mu + \lambda )\nabla (\nabla \bullet {\varvec{u}}) $$
(75)

in the limit of \(\delta \to 0\). Obviously, (75) is mathematically equivalent to (71), which proves (71). The proof of (72) is given in Appendix 3.

In order to show that the peridynamic continuity equation (8) approaches the classical continuity equation (2) in the limit of \(\delta \to 0\), we need to show that

$$ \int_{ - \infty }^{\infty } {{\varvec{C}}_{D} ({\varvec{\xi}}) \bullet (\rho ({\varvec{x}} + {\varvec{\xi}},t){\varvec{v}}({\varvec{x}} + {\varvec{\xi}},t) - \rho ({\varvec{x}},t){\varvec{v}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}} \to \nabla \bullet (\rho {\varvec{v}}) $$
(76)

in the limit of \(\delta \to 0\). The proof of (76) is also given in Appendix 3.

Appendix 2: Convergence proof of peridynamic incompressible fluid mechanics to classical incompressible fluid mechanics and peridynamic acoustics to classical acoustics

We would like to prove that the incompressible peridynamic Navier–Stokes equation (13), the peridynamic incompressibility condition (14), and the peridynamic acoustics governing equation (16) approach the corresponding classical equations (4), (5), and (6), respectively, in the limit of the material horizon \(\delta\) going to zero (\(\delta \to 0\)). In other words, we need to show

$$ {\begin{aligned} & \int_{ - \infty }^{\infty } {{\varvec{C}}_{G} ({\varvec{\xi}})(p^{\prime}({\varvec{x}} + {\varvec{\xi}},t) - p^{\prime}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}} \to \nabla p^{\prime}({\varvec{x}},t)\quad {\text{as}}\;\delta \to 0, \\ & \int_{ - \infty }^{\infty } {C_{L} ({\varvec{\xi}})({\varvec{v}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{v}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}} \to \nabla^{2} {\varvec{v}}({\varvec{x}},t)\quad {\text{as}}\;\delta \to 0, \\ & \int_{ - \infty }^{\infty } {C_{CV} ({\varvec{\xi}},{\varvec{v}}({\varvec{x}},t))({\varvec{v}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{v}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}} \to ({\varvec{v}} \bullet \nabla ){\varvec{v}}\quad {\text{as}}\;\delta \to 0, \\ & \int_{ - \infty }^{\infty } {C_{D} ({\varvec{\xi}})\bullet({\varvec{v}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{v}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}} \to \nabla \bullet {\varvec{v}}\quad {\text{as}}\;\delta \to 0, \\ & \int_{ - \infty }^{\infty } {C_{L} ({\varvec{\xi}})(p^{\prime}({\varvec{x}} + {\varvec{\xi}},t) - p^{\prime}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}} \to \nabla^{2} p^{\prime}({\varvec{x}},t)\quad {\text{as}}\;\delta \to 0. \\ \end{aligned}} $$
(77)

The last limit of (77) is mathematically equivalent to the second limit of (77), since both of them deal with a peridynamic Laplacian of a function, a vector function for the second limit, and a scalar function for the last limit. Thus, we need to prove the first four limits of (77) as \(\delta \to 0\). These all involve the del (nabla) operator, \(\nabla\), and its operation on a function such as gradient, divergence, and Laplacian. All of these are discussed and proved in Appendix 3.

Appendix 3: Peridynamic del operator and peridynamic Laplacian

As mentioned in Sect. 3, it seems clear that the peridynamic (nonlocal) version of many governing equations in mathematical physics can be obtained by following the scheme developed in Mikata [27] and the present paper. In order to facilitate the process, the peridynamic del operator and some other peridynamic D operators are discussed in this Appendix.

First, the following correspondence is proved between some of the classical differential operators including the del operator and the corresponding peridynamic D operators in 3D (three dimensions):

$$ {\begin{aligned} \nabla f \leftrightarrow \nabla_{p}f \equiv {\varvec{J}}_{G} (f) & = \int_{ - \infty }^{\infty } {{\varvec{K}}_{G} ({\varvec{\xi}})(f({\varvec{x}} + {\varvec{\xi}},t) - f({\varvec{x}},t)){\text{d}}{\varvec{\xi}}}, \\ \nabla \bullet {\varvec{f}} \leftrightarrow \nabla_{p}\bullet{\varvec{f}}\equiv J_{D} ({\varvec{f}}) & = \int_{ - \infty }^{\infty } {{\varvec{K}}_{D} ({\varvec{\xi}})\bullet({\varvec{f}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{f}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}}, \\ \nabla \times {\varvec{f}} \leftrightarrow \nabla_{p}\times {\varvec{f}}\equiv {\varvec{J}}_{C} ({\varvec{f}}) & = \int_{ - \infty }^{\infty } {{\varvec{K}}_{C} ({\varvec{\xi}}) \times ({\varvec{f}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{f}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}}, \\ \nabla^{2} {\varvec{f}} \leftrightarrow \nabla_{p}^{2}{\varvec{f}}\equiv {\varvec{J}}_{L} ({\varvec{f}}) & = \int_{ - \infty }^{\infty } {K_{L} ({\varvec{\xi}})({\varvec{f}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{f}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}}, \\ ({\varvec{v}} \bullet \nabla ){\varvec{f}} \leftrightarrow ({\varvec{v}}\bullet\nabla_{p}){\varvec{f}}\equiv {\varvec{J}}_{CV} ({\varvec{f}}) & = \int_{ - \infty }^{\infty } {K_{CV} ({\varvec{\xi}},{\varvec{v}}({\varvec{x}},t))({\varvec{f}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{f}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}} \\ \end{aligned}} $$
(78)

where \(\nabla_p\) is the peridynamic del operator in 3D, and

$$ {\varvec{K}}_{G} ({\varvec{\xi}}) = {\varvec{K}}_{D} ({\varvec{\xi}}) = {\varvec{K}}_{C} ({\varvec{\xi}}) = {\varvec{K}}_{\nabla } ({\varvec{\xi}}) = \frac{3}{4\pi }(\xi_{1} ,\xi_{2} ,\xi_{3} )g_{\delta } (\xi ), $$
(79)
$$ {\begin{aligned} K_{L} ({\varvec{\xi}}) & = \frac{3}{2\pi }g_{\delta } (\xi ), \\ K_{CV} ({\varvec{\xi}},{\varvec{v}}({\varvec{x}},t)) & = {\varvec{v}}\bullet{\varvec{K}}_{\nabla }({\varvec{\xi}}) = \frac{3}{4\pi }(v_{1} ({\varvec{x}},t)\xi_{1} + v_{2} ({\varvec{x}},t)\xi_{2} + v_{3} ({\varvec{x}},t)\xi_{3} )g_{\delta } (\xi ). \\ \end{aligned}} $$
(80)

Here, \(g_{\delta } (\xi )\) is a normalized nonlocality function discussed in Mikata [27], and the suffixes G, D, C, L, and CV stand for “gradient”, “divergence”, “curl”, “Laplacian”, and “convection”, respectively. It should be noted that in the present paper only the spherically symmetric nonlocality functions are considered. The only requirement for the normalized nonlocality function \(g_{\delta } (\xi )\) in 3D is given by (see also Mikata [27])

$$ \mathop {\lim }\limits_{\delta \to 0} \int_{0}^{\infty } {\xi^{2m + 2} g_{\delta } (\xi )d\xi } = \left\{ {\begin{array}{*{20}c} {1} & {(m = 1)} \\ 0 & {(m \ge 2)}. \\ \end{array} } \right. $$
(81)

It should also be mentioned that the last 2 equations of (78) and (80) can be equivalently expressed using a matrix kernel as

$$ {\begin{aligned} \nabla^{2} {\varvec{f}} \leftrightarrow \nabla_{p}^{2}{\varvec{f}}\equiv {\varvec{J}}_{L} ({\varvec{f}}) & = \int_{ - \infty }^{\infty } {{\varvec{K}}_{L} ({\varvec{\xi}})({\varvec{f}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{f}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}}, \\ ({\varvec{v}} \bullet \nabla ){\varvec{f}} \leftrightarrow ({\varvec{v}}\bullet\nabla_{p}){\varvec{f}}\equiv{\varvec{J}}_{CV} ({\varvec{f}}) & = \int_{ - \infty }^{\infty } {{\varvec{K}}_{CV} ({\varvec{\xi}},{\varvec{v}}({\varvec{x}},t))({\varvec{f}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{f}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}} \\ \end{aligned}} $$
(82)

where

$$ {\begin{aligned} {\varvec{K}}_{L} ({\varvec{\xi}}) & = \frac{{3\delta_{ij} }}{2\pi }g_{\delta } (\xi ), \\ {\varvec{K}}_{CV} ({\varvec{\xi}},{\varvec{v}}({\varvec{x}},t)) & = \frac{{3\delta_{ij} }}{4\pi }(v_{1} ({\varvec{x}},t)\xi_{1} + v_{2} ({\varvec{x}},t)\xi_{2} + v_{3} ({\varvec{x}},t)\xi_{3} )g_{\delta } (\xi ). \\ \end{aligned}} $$
(83)

The focus here is to prove (78). In order to do that, we need to show

$$ \begin{aligned} \mathop {\lim }\limits_{\delta \to 0} \nabla_{p} f & = \nabla f, \\ \mathop {\lim }\limits_{\delta \to 0} \nabla_{p}\bullet {\varvec{f}} & = \nabla \bullet {\varvec{f}}, \\ \mathop {\lim }\limits_{\delta \to 0} \nabla_{p}\times {\varvec{f}} & = \nabla \times {\varvec{f}}, \\ \mathop {\lim }\limits_{\delta \to 0} \nabla_{p}^{2}{\varvec{f}} & = \nabla^{2} {\varvec{f}}, \\ \mathop {\lim }\limits_{\delta \to 0} ({\varvec{v}}\bullet\nabla_{p}){\varvec{f}} & = ({\varvec{v}} \bullet \nabla ){\varvec{f}}. \\ \end{aligned} $$
(84)

We have

$$ {\begin{aligned} \nabla_{p}{f}\equiv {\varvec{J}}_{G} (f)& = \sum\limits_{n = 1}^{\infty } {\frac{1}{n!}} {\varvec{J}}_{G}^{(n)} (f), \\ \nabla_{p}\bullet{\varvec{f}}\equiv J_{D} ({\varvec{f}}) & = \sum\limits_{n = 1}^{\infty } {\frac{1}{n!}} J_{D}^{(n)} ({\varvec{f}}), \\ \nabla_{p}\times {\varvec{f}}\equiv{\varvec{J}}_{C} ({\varvec{f}}) & = \sum\limits_{n = 1}^{\infty } {\frac{1}{n!}} {\varvec{J}}_{C}^{(n)} ({\varvec{f}}), \\ \nabla_{p}^{2}{\varvec{f}}\equiv {\varvec{J}}_{L} ({\varvec{f}}) & = \sum\limits_{n = 1}^{\infty } {\frac{1}{n!}} {\varvec{J}}_{L}^{(n)} ({\varvec{f}}), \\ ({\varvec{v}} \bullet\nabla_{p}){\varvec{f}}\equiv{\varvec{J}}_{CV} ({\varvec{f}}) & = \sum\limits_{n = 1}^{\infty } {\frac{1}{n!}} {\varvec{J}}_{CV}^{(n)} ({\varvec{f}}) \\ \end{aligned}} $$
(85)

where

$$ {\begin{aligned} {\varvec{J}}_{G}^{(n)} (f) & = \int_{ - \infty }^{\infty } {{\varvec{K}}_{\nabla} ({\varvec{\xi}})} \left( {\xi_{1} \frac{\partial }{{\partial x_{1} }} + \xi_{2} \frac{\partial }{{\partial x_{2} }} + \xi_{3} \frac{\partial }{{\partial x_{3} }}} \right)^{n} f({\varvec{x}},t){\text{d}}{\varvec{\xi}}, \\ J_{D}^{(n)} ({\varvec{f}}) & = \int_{ - \infty }^{\infty } {{\varvec{K}}_{\nabla} ({\varvec{\xi}})}\bullet\left( {\xi_{1} \frac{\partial }{{\partial x_{1} }} + \xi_{2} \frac{\partial }{{\partial x_{2} }} + \xi_{3} \frac{\partial }{{\partial x_{3} }}} \right)^{n} {\varvec{f}}({\varvec{x}},t){\text{d}}{\varvec{\xi}}, \\ {\varvec{J}}_{C}^{(n)} ({\varvec{f}}) & = \int_{ - \infty }^{\infty } {{\varvec{K}}_{\nabla} ({\varvec{\xi}})} \times \left( {\xi_{1} \frac{\partial }{{\partial x_{1} }} + \xi_{2} \frac{\partial }{{\partial x_{2} }} + \xi_{3} \frac{\partial }{{\partial x_{3} }}} \right)^{n} {\varvec{f}}({\varvec{x}},t){\text{d}}{\varvec{\xi}}, \\ {\varvec{J}}_{L}^{(n)} ({\varvec{f}}) & = \int_{ - \infty }^{\infty } {{{K}}_{L} ({\varvec{\xi}})} \left( {\xi_{1} \frac{\partial }{{\partial x_{1} }} + \xi_{2} \frac{\partial }{{\partial x_{2} }} + \xi_{3} \frac{\partial }{{\partial x_{3} }}} \right)^{n} {\varvec{f}}({\varvec{x}},t){\text{d}}{\varvec{\xi}}, \\ {\varvec{J}}_{CV}^{(n)} ({\varvec{f}}) & = \int_{ - \infty }^{\infty } {\varvec{v}}({\varvec{x}}, t)\bullet{{\varvec{K}}_{\nabla} ({\varvec{\xi}})} \left( {\xi_{1} \frac{\partial }{{\partial x_{1} }} + \xi_{2} \frac{\partial }{{\partial x_{2} }} + \xi_{3} \frac{\partial }{{\partial x_{3} }}} \right)^{n} {\varvec{f}}({\varvec{x}},t){\text{d}}{\varvec{\xi}}. \\ \end{aligned}} $$
(86)

Using (85), and noting that most of the terms in each infinite series in the limit of δ → 0 are zero due to the property of the normalized nonlocality function \(g_{\delta } (\xi )\) (i.e., (81)), we obtain

$$ {\begin{aligned} \mathop {\lim }\limits_{\delta \to 0} {\nabla}_{p} f & = \mathop {\lim }\limits_{\delta \to 0} {\varvec{J}}_{G}^{(1)} (f), \\ \mathop {\lim }\limits_{\delta \to 0} \nabla_{p}\bullet {\varvec{f}} & = \mathop {\lim }\limits_{\delta \to 0} J_{D}^{(1)} ({\varvec{f}}), \\ \mathop {\lim }\limits_{\delta \to 0} {\nabla}_{p}\times{\varvec{f}} & = \mathop {\lim }\limits_{\delta \to 0} {\varvec{J}}_{C}^{(1)} ({\varvec{f}}), \\ \mathop {\lim }\limits_{\delta \to 0} {\nabla}_{p}^{2} {\varvec{f}} & = \frac{1}{2}\mathop {\lim }\limits_{\delta \to 0} {\varvec{J}}_{L}^{(2)} ({\varvec{f}}), \\ \mathop {\lim }\limits_{\delta \to 0} ({\varvec{v}}\bullet{\nabla}_{p}) {\varvec{f}} & = \mathop {\lim }\limits_{\delta \to 0} {\varvec{J}}_{CV}^{(1)} ({\varvec{f}}). \\ \end{aligned}} $$
(87)

After working out the necessary algebras using (86), we finally obtain (84), which proves (78). It should be noted that all of the equations needed to be proved in Appendices 1 and 2 (i.e., (72), (76), and (77)) are included in the correspondence (78).

We have correspondences similar to (78) between classical differential operators and peridynamic D operators in 2D (two dimensions) and in 1D (one dimension). We list the final results without proof below, which can be proved in a similar manner as in 3D.

For 2D:

$$ {\begin{aligned} \nabla f \leftrightarrow \nabla_{p}f \equiv {\varvec{J}}_{G} (f) & = \int_{ - \infty }^{\infty } {{\varvec{K}}_{G} ({\varvec{\xi}})(f({\varvec{x}} + {\varvec{\xi}},t) - f({\varvec{x}},t)){\text{d}}{\varvec{\xi}}}, \\ \nabla \bullet {\varvec{f}} \leftrightarrow \nabla_{p} \bullet {\varvec{J}} \equiv J_{D} ({\varvec{f}}) & = \int_{ - \infty }^{\infty } {{\varvec{K}}_{D} ({\varvec{\xi}}) \bullet ({\varvec{f}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{f}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}}, \\ \nabla^{2} {\varvec{f}} \leftrightarrow \nabla_{p}^{2} {\varvec{f}} \equiv {\varvec{J}}_{L} ({\varvec{f}}) & = \int_{ - \infty }^{\infty } {K_{L} ({\varvec{\xi}})({\varvec{f}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{f}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}}, \\ ({\varvec{v}} \bullet \nabla ){\varvec{f}} \leftrightarrow ({\varvec{v}}\bullet\nabla_{p}){\varvec{f}}\equiv{\varvec{J}}_{CV} ({\varvec{f}}) & = \int_{ - \infty }^{\infty } {K_{CV} ({\varvec{\xi}},{\varvec{v}}({\varvec{x}},t))({\varvec{f}}({\varvec{x}} + {\varvec{\xi}},t) - {\varvec{f}}({\varvec{x}},t)){\text{d}}{\varvec{\xi}}} \\ \end{aligned}} $$
(88)

where \(\nabla_{p}\) is the peridynamic del operator in 2D, and

$$ {\varvec{K}}_{G} ({\varvec{\xi}}) = {\varvec{K}}_{D} ({\varvec{\xi}}) = {\varvec{K}}_{\nabla } ({\varvec{\xi}}) = \frac{1}{\pi }(\xi_{1} ,\xi_{2} )g_{\delta } (\xi ), $$
(89)
$$ K_{L} ({\varvec{\xi}}) = \frac{2}{\pi }g_{\delta } (\xi ), $$
(90)
$$ K_{CV} ({\varvec{\xi}},{\varvec{v}}({\varvec{x}},t)) = \frac{1}{\pi }(v_{1} ({\varvec{x}},t)\xi_{1} + v_{2} ({\varvec{x}},t)\xi_{2} )g_{\delta } (\xi ). $$
(91)

Here, the requirement for the normalized nonlocality function \(g_{\delta } (\xi )\) in 2D is given by

$$ \mathop {\lim }\limits_{\delta \to 0} \int_{0}^{\infty } {\xi^{2m + 1} g_{\delta } (\xi )d\xi } = \left\{ {\begin{array}{*{20}c} {1} & {(m = 1)} \\ 0 & {(m \ge 2)}. \\ \end{array} } \right. $$
(92)

For 1D:

$$ {\begin{aligned} \frac{{{\text{d}}f}}{{{\text{d}}x}} \leftrightarrow D_{x} f \equiv J_{1} (f) & = \int_{ - \infty }^{\infty } {K_{1} (\xi )(f(x + \xi ,t) - f(x,t)){\text{d}}\xi }, \\ \frac{{{\text{d}}^{2} f}}{{{\text{d}}x^{2} }} \leftrightarrow D_{x}^{2} f \equiv J_{2} (f) & = \int_{ - \infty }^{\infty } {K_{2} (\xi )(f(x + \xi ,t) - f(x,t)){\text{d}}\xi }, \\ \frac{{{\text{d}}^{n} f}}{{{\text{d}}x^{n} }} \leftrightarrow D_{x}^{n} f \equiv J_{n} (f) & = \int_{ - \infty }^{\infty } {K_{n} (\xi )(f(x + \xi ,t) - f(x,t)){\text{d}}\xi } \\ \end{aligned}} $$
(93)

where \(D_{x}\) is a peridynamic D operator in 1D, and

$$ {\begin{aligned} K_{1} (\xi ) & = \frac{\xi }{2}g_{\delta } (\xi ), \\ K_{2} (\xi ) & = g_{\delta } (\xi ), \\ K_{n} (\xi ) & = \frac{n!}{{2\xi^{n - 2} }}g_{\delta } (\xi ). \\ \end{aligned}} $$
(94)

Here, the requirement for the normalized nonlocality function \(g_{\delta } (\xi )\) in 1D is given by

$$ \mathop {\lim }\limits_{\delta \to 0} \int_{0}^{\infty } {\xi^{2m} g_{\delta } (\xi )d\xi } = \left\{ {\begin{array}{*{20}c} {1} & {(m = 1)} \\ 0 & {(m \ge 2)}. \\ \end{array} } \right. $$
(95)

By using (93) and (94), for example, we have the following correspondence:

$$ E\frac{{\partial^{2} u}}{{\partial x^{2} }} + b(x,t) = \rho \frac{{\partial^{2} u}}{{\partial t^{2} }} \leftrightarrow \int_{ - \infty }^{\infty } {C(\xi )} (u(x - \xi ,t) - u(x,t))d\xi + b(x,t) = \rho \ddot{u}(x,t) $$
(96)

where the right side of the above correspondence is 1D peridynamics studied in Silling et al. [3] and Mikata [18] in detail, and

$$ C(\xi ) = Eg_{\delta } (\xi ). $$
(97)

As was discussed in Silling et. al [3] and Mikata [18], there is a relation between \(C(\xi )\) and Young’s modulus E,

$$ E = \int_{0}^{\infty } {\xi^{2} } C(\xi ){\text{d}}\xi. $$
(98)

The above relation (98) was “derived” by a physical argument in Silling et al. [3]. It is important to mention here that this relation (98) can be derived immediately from (97) and (95), where (97) (i.e., (96)) is a special case of the correspondence between the classical differential operators and the peridynamic D operators systematically developed in this Appendix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikata, Y. Peridynamics for fluid mechanics and acoustics. Acta Mech 232, 3011–3032 (2021). https://doi.org/10.1007/s00707-021-02947-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02947-0

Navigation