Skip to main content
Log in

Probabilistic analysis of dynamic stability for a rotating BDFG tapered beam with time-varying velocity and stochastic parameters

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Taking the randomness of parameters into account, probabilistic dynamic stability analysis is carried out for a rotating tapered beam made of bidirectional functionally graded (BDFG) materials with time-dependent rotation speed. Hamilton’s principle is adopted to establish the equations of motion. The dynamic instability problem due to parametrical excitation is solved by Bolotin’s method with higher-order approximation. Considering parameter uncertainty, the stability-based system reliability model with multiple failure modes is clarified and established for probabilistic analysis. The active learning and Kriging-based system reliability (AK-SYS) method is used to estimate the stability-based system reliability of the rotating beam. In addition, an improved stopping criterion for an active learning procedure is introduced in the application of the AK-SYS method to accelerate iteration. Monte Carlo simulation is employed to verify the accuracy and efficiency of the proposed method. Finally, a numerical example is carried out for a parameter study, and the reliability-based sensitivities are investigated to rank the geometric and working parameters according to their importance to the system failure probability. Some useful information is provided for the design and use of rotating beam structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bulut, G.: Effect of taper ratio on parametric stability of a rotating tapered beam. Eur. J. Mech. A. Solids 37, 344–350 (2013). https://doi.org/10.1016/j.euromechsol.2012.08.007

    Article  MathSciNet  MATH  Google Scholar 

  2. Shiau, T.N., Tong, J.S.: Stability and Response of Rotating Pretwisted Tapered Blades. Journal of Aerospace Engineering 3(1), 1–18 (1990). https://doi.org/10.1061/(ASCE)0893-1321(1990)3:1(1)

    Article  Google Scholar 

  3. Sabuncu, M., Evran, K.: The dynamic stability of a rotating pre-twisted asymmetric cross-section Timoshenko beam subjected to lateral parametric excitation. Int. J. Mech. Sci. 48(8), 878–888 (2006). https://doi.org/10.1016/j.ijmecsci.2006.01.019

    Article  MATH  Google Scholar 

  4. Young, T.H.: Dynamic response of a pretwisted, tapered beam with non-constant rotating speed. J. Sound Vib. 150(3), 435–446 (1991). https://doi.org/10.1016/0022-460X(91)90896-R

    Article  Google Scholar 

  5. Chung, J., Jung, D., Yoo, H.H.: Stability analysis for the flapwise motion of a cantilever beam with rotary oscillation. J. Sound Vib. 273(4), 1047–1062 (2004). https://doi.org/10.1016/S0022-460X(03)00521-2

    Article  Google Scholar 

  6. Wang, F., Zhang, W.: Stability analysis of a nonlinear rotating blade with torsional vibrations. J. Sound Vib. 331(26), 5755–5773 (2012). https://doi.org/10.1016/j.jsv.2012.05.024

    Article  Google Scholar 

  7. Arvin, H., Tang, Y.-Q., Ahmadi Nadooshan, A.: Dynamic stability in principal parametric resonance of rotating beams: Method of multiple scales versus differential quadrature method. Int. J. Non-Linear Mech. 85, 118–125 (2016). https://doi.org/10.1016/j.ijnonlinmec.2016.06.007

    Article  Google Scholar 

  8. Chen, L.W., Peng, W.K.: Dynamic stability of rotating blades with geometric non-linearity. J. Sound Vib. 187(3), 421–433 (1995). https://doi.org/10.1006/jsvi.1995.0533

    Article  Google Scholar 

  9. Lin, C.-Y., Chen, L.-W.: Dynamic stability of rotating pre-twisted blades with a constrained damping layer. Compos. Struct. 61(3), 235–245 (2003). https://doi.org/10.1016/S0263-8223(03)00048-5

    Article  Google Scholar 

  10. Nayak, B., Dwivedy, S.K., Murthy, K.S.R.K.: Dynamic stability of a rotating sandwich beam with magnetorheological elastomer core. Eur. J. Mech. A. Solids 47, 143–155 (2014). https://doi.org/10.1016/j.euromechsol.2014.03.004

    Article  MATH  Google Scholar 

  11. Saravia, C.M., Machado, S.P., Cortínez, V.H.: Free vibration and dynamic stability of rotating thin-walled composite beams. Eur. J. Mech. A. Solids 30(3), 432–441 (2011). https://doi.org/10.1016/j.euromechsol.2010.12.015

    Article  MathSciNet  MATH  Google Scholar 

  12. Ananda Babu, A., Vasudevan, R.: Dynamic instability analysis of rotating delaminated tapered composite plates subjected to periodic in-plane loading. Arch. Appl. Mech. 86(12), 1965–1986 (2016). https://doi.org/10.1007/s00419-016-1162-4

    Article  Google Scholar 

  13. Chen, W.-R.: Dynamic stability of linear parametrically excited twisted Timoshenko beams under periodic axial loads. Acta Mech. 216(1), 207–223 (2011). https://doi.org/10.1007/s00707-010-0364-z

    Article  MATH  Google Scholar 

  14. Bolotin V. V.: The dynamic stability of elastic system (Translated from the Russian). Holden-Day, San Francisco, London, Amsterdam (1965)

    Google Scholar 

  15. Seraj, S., Ganesan, R.: Dynamic instability of rotating doubly-tapered laminated composite beams under periodic rotational speeds. Compos. Struct. 200, 711–728 (2018). https://doi.org/10.1016/j.compstruct.2018.05.133

    Article  Google Scholar 

  16. Turhan, Ö., Bulut, G.: Dynamic stability of rotating blades (beams) eccentrically clamped to a shaft with fluctuating speed. J. Sound Vib. 280(3), 945–964 (2005). https://doi.org/10.1016/j.jsv.2003.12.053

    Article  Google Scholar 

  17. Joseph, S.V., Mohanty, S.C.: Free vibration and parametric instability of viscoelastic sandwich plates with functionally graded material constraining layer. Acta Mech. 230(8), 2783–2798 (2019). https://doi.org/10.1007/s00707-019-02433-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao, K., Do, D.M., Li, R., Kitipornchai, S., Yang, J.: Probabilistic stability analysis of functionally graded graphene reinforced porous beams. Aerosp. Sci. Technol. 98, 105738 (2020). https://doi.org/10.1016/j.ast.2020.105738

    Article  Google Scholar 

  19. Dey, S., Mukhopadhyay, T., Sahu, S.K., Adhikari, S.: Stochastic dynamic stability analysis of composite curved panels subjected to non-uniform partial edge loading. Eur. J. Mech. A. Solids 67, 108–122 (2018). https://doi.org/10.1016/j.euromechsol.2017.09.005

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, C., Qu, Z., Weitnauer, M.A.: Distributed extremum seeking and formation control for nonholonomic mobile network. Systems & Control Letters 75, 27–34 (2015). https://doi.org/10.1016/j.sysconle.2014.11.005

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhao, Y.-G., Ono, T.: A general procedure for first/second-order reliabilitymethod (FORM/SORM). Struct. Saf. 21(2), 95–112 (1999). https://doi.org/10.1016/S0167-4730(99)00008-9

    Article  Google Scholar 

  22. Zhang, Y., Wen, B., Liu, Q.: First passage of uncertain single degree-of-freedom nonlinear oscillators. Comput. Methods Appl. Mech. Eng. 165(1), 223–231 (1998). https://doi.org/10.1016/S0045-7825(98)00042-5

    Article  MATH  Google Scholar 

  23. Zhang, Y.M., Liu, Q., Wen, B.: Practical reliability-based design of gear pairs. Mech. Mach. Theory 38(12), 1363–1370 (2003). https://doi.org/10.1016/S0094-114X(03)00092-2

    Article  MATH  Google Scholar 

  24. Nie, J., Ellingwood, B.R.: Directional methods for structural reliability analysis. Struct. Saf. 22(3), 233–249 (2000). https://doi.org/10.1016/S0167-4730(00)00014-X

    Article  Google Scholar 

  25. Au, S.K., Ching, J., Beck, J.L.: Application of subset simulation methods to reliability benchmark problems. Struct. Saf. 29(3), 183–193 (2007). https://doi.org/10.1016/j.strusafe.2006.07.008

    Article  Google Scholar 

  26. Au, S.K., Beck, J.L.: A new adaptive importance sampling scheme for reliability calculations. Struct. Saf. 21(2), 135–158 (1999). https://doi.org/10.1016/S0167-4730(99)00014-4

    Article  Google Scholar 

  27. Gavin, H.P., Yau, S.C.: High-order limit state functions in the response surface method for structural reliability analysis. Struct. Saf. 30(2), 162–179 (2008). https://doi.org/10.1016/j.strusafe.2006.10.003

    Article  Google Scholar 

  28. Hosni Elhewy, A., Mesbahi, E., Pu, Y.: Reliability analysis of structures using neural network method. Probab. Eng. Mech. 21(1), 44–53 (2006). https://doi.org/10.1016/j.probengmech.2005.07.002

    Article  Google Scholar 

  29. Bichon, B.J., Eldred, M.S., Swiler, L.P., Mahadevan, S., McFarland, J.M.: Efficient global reliability analysis for nonlinear implicit performance functions. AIAA J 46(10), 2459–2468 (2008). https://doi.org/10.2514/1.34321

    Article  Google Scholar 

  30. Echard, B., Gayton, N., Lemaire, M.: AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation. Struct. Saf. 33(2), 145–154 (2011). https://doi.org/10.1016/j.strusafe.2011.01.002

    Article  Google Scholar 

  31. Lv, Z., Lu, Z., Wang, P.: A new learning function for Kriging and its applications to solve reliability problems in engineering. Comput. Math. Appl. 70(5), 1182–1197 (2015). https://doi.org/10.1016/j.camwa.2015.07.004

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, Z., Wang, J., Li, R., Tong, C.: LIF: A new Kriging based learning function and its application to structural reliability analysis. Reliability Engineering & System Safety 157, 152–165 (2017). https://doi.org/10.1016/j.ress.2016.09.003

    Article  Google Scholar 

  33. Tong, C., Wang, J., Liu, J.: A Kriging-Based Active Learning Algorithm for Mechanical Reliability Analysis with Time-Consuming and Nonlinear Response. Mathematical Problems in Engineering 2019, 7672623 (2019). https://doi.org/10.1155/2019/7672623

    Article  MathSciNet  MATH  Google Scholar 

  34. Tong, C., Sun, Z., Zhao, Q., Wang, Q., Wang, S.: A hybrid algorithm for reliability analysis combining Kriging and subset simulation importance sampling. J. Mech. Sci. Technol. 29(8), 3183–3193 (2015). https://doi.org/10.1007/s12206-015-0717-6

    Article  Google Scholar 

  35. Bichon, B.J., McFarland, J.M., Mahadevan, S.: Efficient surrogate models for reliability analysis of systems with multiple failure modes. Reliability Engineering & System Safety 96(10), 1386–1395 (2011). https://doi.org/10.1016/j.ress.2011.05.008

    Article  Google Scholar 

  36. Fauriat, W., Gayton, N.: AK-SYS: An adaptation of the AK-MCS method for system reliability. Reliability Engineering & System Safety 123, 137–144 (2014). https://doi.org/10.1016/j.ress.2013.10.010

    Article  Google Scholar 

  37. Bhattacharya, S., Das, D.: Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory. Compos. Struct. 215, 471–492 (2019). https://doi.org/10.1016/j.compstruct.2019.01.080

    Article  Google Scholar 

  38. Yao, G., Zhang, Y.: Reliability and sensitivity analysis of an axially moving beam. Meccanica 51(3), 491–499 (2016). https://doi.org/10.1007/s11012-015-0232-y

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou, Y., Zhang, Y., Yao, G.: Stochastic forced vibration analysis of a tapered beam with performance deterioration. Acta Mech. 228(4), 1393–1406 (2017). https://doi.org/10.1007/s00707-016-1764-5

    Article  MathSciNet  MATH  Google Scholar 

  40. Savage, G.J., Zhang, X., Son, Y.K., Pandey, M.D.: Reliability of mechanisms with periodic random modal frequencies using an extreme value-based approach. Reliability Engineering & System Safety 150, 65–77 (2016). https://doi.org/10.1016/j.ress.2016.01.009

    Article  Google Scholar 

  41. Wu, Y.T., Mohanty, S.: Variable screening and ranking using sampling-based sensitivity measures. Reliability Engineering & System Safety 91(6), 634–647 (2006). https://doi.org/10.1016/j.ress.2005.05.004

    Article  Google Scholar 

  42. Esen, I.: Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load. Eur. J. Mech. A. Solids 78, 103841 (2019). https://doi.org/10.1016/j.euromechsol.2019.103841

    Article  MathSciNet  MATH  Google Scholar 

  43. Tang, Y., Ding, Q.: Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads. Compos. Struct. 225, 111076 (2019). https://doi.org/10.1016/j.compstruct.2019.111076

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to Chinese National Natural Science Foundations (U1708254, 51975511), and the Fundamental Research Funds for the Central Universities (N2003023) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yimin Zhang or Guo Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhang, Y. & Yao, G. Probabilistic analysis of dynamic stability for a rotating BDFG tapered beam with time-varying velocity and stochastic parameters. Acta Mech 232, 1709–1728 (2021). https://doi.org/10.1007/s00707-020-02931-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02931-0

Navigation