Skip to main content
Log in

Investigation on cross-scale indentation scaling relationships of elastic–plastic solids

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Indentation scaling relationships provide normalized guidance for measuring and predicting mechanical properties in indentation experiments. At the nano-scale, the material size-effect is significant, while conventional scaling relationships fail to depict this phenomenon in nanoindentation precisely. In the present research, cross-scale indentation scaling relationships are investigated using a strain gradient theory. The nanoindentation response is found to be sensitive to different material parameters, including the material intrinsic length, yield stress, and work-hardening exponent across size-scales. If the strain gradient effect is ignored, the nanoindentation scaling relationships approach the macroscopic conventional ones. The cross-scale indentation scaling relationships obtained in the form of dimensionless functions in this work provide quantitative references to instrumented indentation tests on multiple size-scales, coinciding well with experimental results. The understanding of nanoindentation hardness is enhanced by the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tabor, D.: The hardness and strength of metals. J. Inst. Met. 79, 1 (1951)

    Google Scholar 

  2. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  Google Scholar 

  3. Lee, J.H., Kim, T., Lee, H.: A study on robust indentation techniques to evaluate elastic–plastic properties of metals. Int. J. Solids Struct. 47(5), 647–664 (2010). https://doi.org/10.1016/j.ijsolstr.2009.11.003

    Article  MATH  Google Scholar 

  4. Eswar Prasad, K., Chollacoop, N., Ramamurty, U.: Role of indenter angle on the plastic deformation underneath a sharp indenter and on representative strains: an experimental and numerical study. Acta Mater. 59(11), 4343–4355 (2011). https://doi.org/10.1016/j.actamat.2011.03.058

    Article  Google Scholar 

  5. Fischer-Cripps, A.C., Nicholson, D.W.: Nanoindentation. Mechanical engineering series. Appl. Mech. Rev. 57(2), B12–B12 (2004). https://doi.org/10.1115/1.1704625

    Article  Google Scholar 

  6. Broitman, E.: Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview. Tribol. Lett. 65(1), 581 (2017). https://doi.org/10.1007/s11249-016-0805-5

    Article  Google Scholar 

  7. Voyiadjis, G., Yaghoobi, M.: Review of nanoindentation size effect: experiments and atomistic simulation. Crystals 7(10), 321 (2017). https://doi.org/10.3390/cryst7100321

    Article  Google Scholar 

  8. Cheng, Y.-T., Cheng, C.-M.: Scaling approach to conical indentation in elastic–plastic solids with work hardening. J. Appl. Phys. 84(3), 1284–1291 (1998). https://doi.org/10.1063/1.368196

    Article  Google Scholar 

  9. Cheng, Y.-T., Cheng, C.-M.: Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73(5), 614–616 (1998). https://doi.org/10.1063/1.121873

    Article  Google Scholar 

  10. Cheng, Y.-T., Cheng, C.-M.: Can stress–strain relationships be obtained from indentation curves using conical and pyramidal indenters? J. Mater. Res. 14(9), 3493–3496 (1999). https://doi.org/10.1557/JMR.1999.0472

    Article  Google Scholar 

  11. Cheng, Y.-T., Cheng, C.-M.: Scaling relationships in indentation of power-law creep solids using self-similar indenters. Philos. Mag. Lett. 81(1), 9–16 (2001). https://doi.org/10.1080/09500830010008457

    Article  Google Scholar 

  12. Cheng, Y.-T., Cheng, C.-M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R Rep. 44(4–5), 91–149 (2004). https://doi.org/10.1016/j.mser.2004.05.001

    Article  Google Scholar 

  13. Xiao, G., et al.: Determination of power hardening elastoplastic constitutive relation of metals through indentation tests with plural indenters. Mech. Mater. 138, 103173 (2019). https://doi.org/10.1016/j.mechmat.2019.103173

    Article  Google Scholar 

  14. Smerdova, O., Pecora, M., Gigliotti, M.: Cyclic indentation of polymers: Instantaneous elastic modulus from reloading, energy analysis, and cyclic creep. J. Mater. Res. 34(21), 3688–3698 (2019). https://doi.org/10.1557/jmr.2019.289

    Article  Google Scholar 

  15. Kang, G., Yan, W.: Scaling relationships in sharp conical indentation of shape memory alloys. Philos. Mag. 90(5), 599–616 (2010). https://doi.org/10.1080/14786430903213346

    Article  Google Scholar 

  16. Rodríguez, M., Molina-Aldareguía, J.M., González, C., LLorca, J.: Determination of the mechanical properties of amorphous materials through instrumented nanoindentation. Acta Mater. 60(9), 3953–3964 (2012). https://doi.org/10.1016/j.actamat.2012.03.027

    Article  Google Scholar 

  17. Bazzaz, E., Darvizeh, A., Alitavoli, M., Tooski, M.Y.: Implementation of the new minimum resultant error approach to extract elastic–plastic properties of titanium nitride thin film by nanoindentation, finite element analysis, and modified dimensional analysis. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 54, 095440622091432 (2020). https://doi.org/10.1177/0954406220914326

    Article  Google Scholar 

  18. Hamada, S., Kashiwa, S., Noguchi, H.: Measurement of local mechanical properties using multiple indentations by a special conical indenter and error analysis. J. Mater. Res. 31(2), 259–273 (2016). https://doi.org/10.1557/jmr.2015.383

    Article  Google Scholar 

  19. Pöhl, F.: Determination of unique plastic properties from sharp indentation. Int. J. Solids Struct. 171, 174–180 (2019). https://doi.org/10.1016/j.ijsolstr.2019.04.008

    Article  Google Scholar 

  20. Li, Y., Stevens, P., Sun, M., Zhang, C., Wang, W.: Improvement of predicting mechanical properties from spherical indentation test. Int. J. Mech. Sci. 117, 182–196 (2016). https://doi.org/10.1016/j.ijmecsci.2016.08.019

    Article  Google Scholar 

  21. Yu, Z., Wei, Y.: A study of indentation scaling relationships of elastic-perfectly plastic solids with an inclusion near the conical indenter tip. Sci. China Technol. Sci. 62(5), 721–728 (2019). https://doi.org/10.1007/s11431-018-9424-4

    Article  Google Scholar 

  22. Lu, L., Dao, M., Kumar, P., Ramamurty, U., Karniadakis, G.E., Suresh, S.: Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proc. Natl. Acad. Sci. USA 117(13), 7052–7062 (2020). https://doi.org/10.1073/pnas.1922210117

    Article  Google Scholar 

  23. Zhang, M.-G., Cao, Y.-P., Li, G.-Y., Feng, X.-Q.: Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials. Biomech. Model. Mechanobiol. 13(1), 1–11 (2014). https://doi.org/10.1007/s10237-013-0481-4

    Article  Google Scholar 

  24. Lee, H., Huen, W.Y., Vimonsatit, V., Mendis, P.: An investigation of nanomechanical properties of materials using nanoindentation and artificial neural network. Sci. Rep. 9(1), 13189 (2019). https://doi.org/10.1038/s41598-019-49780-z

    Article  Google Scholar 

  25. Lloyd, D.J.: Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39(1), 1–23 (1994). https://doi.org/10.1179/imr.1994.39.1.1

    Article  Google Scholar 

  26. Armstrong, R.W.: Size effects on material yield strength/deformation/fracturing properties. J. Mater. Res. 34(13), 2161–2176 (2019). https://doi.org/10.1557/jmr.2018.406

    Article  Google Scholar 

  27. Magonov, S.N., Elings, V., Whangbo, M.-H.: Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf. Sci. 375(2–3), L385–L391 (1997). https://doi.org/10.1016/S0039-6028(96)01591-9

    Article  Google Scholar 

  28. Stegall, D.E., Mamun, M.A., Crawford, B., Elmustafa, A.: Indentation size effect in FCC metals: an examination of experimental techniques and the bilinear behavior. J. Mater. Res. 27(12), 1543–1552 (2012). https://doi.org/10.1557/jmr.2012.91

    Article  Google Scholar 

  29. Lucas, M., Gall, K., Riedo, E.: Tip size effects on atomic force microscopy nanoindentation of a gold single crystal. J. Appl. Phys. 104(11), 113515 (2008). https://doi.org/10.1063/1.3039511

    Article  Google Scholar 

  30. Ni, H., Li, X.: Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 17(14), 3591–3597 (2006). https://doi.org/10.1088/0957-4484/17/14/039

    Article  Google Scholar 

  31. Jee, A.-Y., Lee, M.: Comparative analysis on the nanoindentation of polymers using atomic force microscopy. Polym. Test. 29(1), 95–99 (2010). https://doi.org/10.1016/j.polymertesting.2009.09.009

    Article  MathSciNet  Google Scholar 

  32. Fischer-Cripps, A.C.: Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Technol. 200(14–15), 4153–4165 (2006). https://doi.org/10.1016/j.surfcoat.2005.03.018

    Article  Google Scholar 

  33. Lin, Z., Yu, Z., Wei, Y.: Measurement of nanoindentation properties of polymers considering adhesion effects between AFM sharp indenter and material. J. Adhes. Sci. Technol. 38(3), 1–18 (2020). https://doi.org/10.1080/01694243.2020.1714117

    Article  Google Scholar 

  34. Long, X., Jia, Q.P., Li, Z., Wen, S.X.: Reverse analysis of constitutive properties of sintered silver particles from nanoindentations. Int. J. Solids Struct. 191–192, 351–362 (2020). https://doi.org/10.1016/j.ijsolstr.2020.01.014

    Article  Google Scholar 

  35. Swadener, J.G., George, E.P., Pharr, G.M.: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50(4), 681–694 (2002). https://doi.org/10.1016/S0022-5096(01)00103-X

    Article  MATH  Google Scholar 

  36. Liu, M., Lu, C., Tieu, K.A., Peng, C.-T., Kong, C.: A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation. Sci. Rep. 5, 15072 (2015). https://doi.org/10.1038/srep15072

    Article  Google Scholar 

  37. Jiapeng, S., Cheng, L., Han, J., Ma, A., Fang, L.: Nanoindentation induced deformation and pop-in events in a silicon crystal: molecular dynamics simulation and experiment. Sci. Rep. 7(1), 10282 (2017). https://doi.org/10.1038/s41598-017-11130-2

    Article  Google Scholar 

  38. Zhou, X., et al.: High-pressure strengthening in ultrafine-grained metals. Nature 579(7797), 67–72 (2020). https://doi.org/10.1038/s41586-020-2036-z

    Article  Google Scholar 

  39. Yang, R., et al.: The significance and challenges on determining the size-effect of indentation hardness at nano-scale. Sci. Sin. Phys. Mech. Astron. 48(9), 94603 (2018). https://doi.org/10.1360/SSPMA2018-00206

    Article  Google Scholar 

  40. Gouldstone, A., Chollacoop, N., Dao, M., Ll, J., Minor, A., Shen, Y.: Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55(12), 4015–4039 (2007). https://doi.org/10.1016/j.actamat.2006.08.044

    Article  Google Scholar 

  41. Huang, Y., Qu, S., Hwang, K.C., Li, M., Gao, H.: A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20(4–5), 753–782 (2004). https://doi.org/10.1016/j.ijplas.2003.08.002

    Article  MATH  Google Scholar 

  42. Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998). https://doi.org/10.1016/S0022-5096(97)00086-0

    Article  MATH  Google Scholar 

  43. Martínez-Pañeda, E., Betegón, C.: Modeling damage and fracture within strain-gradient plasticity. Int. J. Solids Struct. 59, 208–215 (2015). https://doi.org/10.1016/j.ijsolstr.2015.02.010

    Article  Google Scholar 

  44. Martínez-Pañeda, E., Niordson, C.F.: On fracture in finite strain gradient plasticity. Int. J. Plast. 80, 154–167 (2016). https://doi.org/10.1016/j.ijplas.2015.09.009

    Article  Google Scholar 

  45. Swaddiwudhipong, S., Tho, K.K., Hua, J., Liu, Z.S.: Mechanism-based strain gradient plasticity in C0 axisymmetric element. Int. J. Solids Struct. 43(5), 1117–1130 (2006). https://doi.org/10.1016/j.ijsolstr.2005.05.026

    Article  MATH  Google Scholar 

  46. Smith, M.: ABAQUS/Standard User's Manual, Version 6.14. Pawtucket, Rhode Island (2014).

  47. Brand, L.: The Pi theorem of dimensional analysis. Arch. Ration. Mech. Anal. 1(1), 35–45 (1957)

    Article  MathSciNet  Google Scholar 

  48. Bhattacharya, A.K., Nix, W.D.: Finite element simulation of indentation experiments. Int. J. Solids Struct. 24(9), 881–891 (1988). https://doi.org/10.1016/0020-7683(88)90039-X

    Article  Google Scholar 

  49. Cheng, Y.-T., Li, Z., Cheng, C.-M.: Scaling relationships for indentation measurements. Philos. Mag. A 82(10), 1821–1829 (2002). https://doi.org/10.1080/01418610208235693

    Article  Google Scholar 

  50. Laursen, T.A., Simo, J.C.: A study of the mechanics of microindentation using finite elements. J. Mater. Res. 7(3), 618–626 (1992). https://doi.org/10.1557/JMR.1992.0618

    Article  Google Scholar 

  51. Zhang, F., Hwang, K.C., Huang, Y.G., Qin, J.: Friction effect on indentation. Gongcheng Lixue/Eng. Mech. 23(Suppl), 1–6 (2006)

    Google Scholar 

  52. Trelewicz, J.R., Schuh, C.A.: The Hall–Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation. Acta Mater. 55(17), 5948–5958 (2007). https://doi.org/10.1016/j.actamat.2007.07.020

    Article  Google Scholar 

  53. Dang, S., Zhu, Q.-L., Xu, Q.: Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3(1), 10667 (2018). https://doi.org/10.1038/natrevmats.2017.75

    Article  Google Scholar 

  54. Barenblat, G.: Scaling, Self-Similarity and Intermediate Asymptotics. CUP, Cambridge (1996)

    Book  Google Scholar 

  55. Mata, M., Alcalá, J.: The role of friction on sharp indentation. J. Mech. Phys. Solids 52(1), 145–165 (2004). https://doi.org/10.1016/S0022-5096(03)00075-9

    Article  MATH  Google Scholar 

  56. Wei, Y., Shu, S., Du, Y., Zhu, C.: Size, geometry and nonuniformity effects of surface-nanocrystalline aluminum in nanoindentation test. Int. J. Plast 21(11), 2089–2106 (2005). https://doi.org/10.1016/j.ijplas.2005.04.002

    Article  MATH  Google Scholar 

  57. Swadener, J.G., George, E.P., Pharr, G.M.: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681–694 (2002)

    Article  Google Scholar 

  58. Shell De Guzman, M., Neubauer, G., Flinn, P., Nix, W.D.: The role of indentation depth on the measured hardness of materials. MRS Proc. 308, 12 (1993). https://doi.org/10.1557/PROC-308-613

    Article  Google Scholar 

  59. Bull, S.J.: On the origins and mechanisms of the indentation size effect. MEKU 94(7), 787–792 (2003). https://doi.org/10.3139/146.030787

    Article  Google Scholar 

  60. Kim, J.-Y., Kang, S.-K., Lee, J.-J., Jang, J.-I., Lee, Y.-H., Kwon, D.: Influence of surface-roughness on indentation size effect. Acta Mater. 55(10), 3555–3562 (2007). https://doi.org/10.1016/j.actamat.2007.02.006

    Article  Google Scholar 

  61. McElhaney, K.W., Vlassak, J.J., Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13(5), 1300–1306 (1998). https://doi.org/10.1557/JMR.1998.0185

    Article  Google Scholar 

  62. Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10(4), 853–863 (1995). https://doi.org/10.1557/JMR.1995.0853

    Article  Google Scholar 

  63. Wei, Y., Wang, X., Xiaolei, Wu., Bai, Y.: Theories and experiments of size-effect in indentation. Sci. China Ser. A Math. 30(11), 1025–1032 (2000). https://doi.org/10.1360/za2000-30-11-1025

    Article  Google Scholar 

  64. Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  MathSciNet  Google Scholar 

  65. Shu, J.Y., Barlow, C.Y.: Strain gradient effects on microscopic strain field in a metal matrix composite. Int. J. Plast. 16(5), 563–591 (2000). https://doi.org/10.1016/S0749-6419(99)00088-1

    Article  MATH  Google Scholar 

  66. Wei, Y., Hutchinson, J.W.: Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J. Mech. Phys. Solids 45(8), 1253–1273 (1997). https://doi.org/10.1016/S0022-5096(97)00018-5

    Article  MathSciNet  MATH  Google Scholar 

  67. Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity I. Theory. J. Mech. Phys. Solids 47(6), 1239–1263 (1999). https://doi.org/10.1016/S0022-5096(98)00103-3

    Article  MathSciNet  MATH  Google Scholar 

  68. Huang, Y., Gao, H., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity II. Analysis. J. Mech. Phys. Solids 48, 99–128 (2000)

    Article  MathSciNet  Google Scholar 

  69. Taylor, G.I.: The mechanism of plastic deformation of crystals part I—theoretical. Proc. R. Soc. Lond. Ser. A 145(885), 362–387 (1934)

    MATH  Google Scholar 

  70. Taylor, G.I.: Plastic strain in metals. J. Inst. Metals 62, 307–324 (1938)

    Google Scholar 

  71. Qu, S., Huang, Y., Jiang, H., Liu, C., Wu, P.D., Hwang, K.C.: Fracture analysis in the conventional theory of mechanism-based strain gradient (CMSG) plasticity. Int. J. Fract. 129, 199–220 (2004)

    Article  Google Scholar 

  72. Song, H., van der Giessen, E., Liu, X.: Strain gradient plasticity analysis of elasto-plastic contact between rough surfaces. J. Mech. Phys. Solids 96, 18–28 (2016). https://doi.org/10.1016/j.jmps.2016.07.00

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSF of China through Grants Nos. 11890681, 12032001, 11672301 and 11521202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueguang Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Conventional theory of mechanism-based strain gradient

Appendix A: Conventional theory of mechanism-based strain gradient

Multiple material models have been suggested by many researchers to overcome the limitation that the conventional theory failed to predict the size-effect of materials. A strain gradient term together with a length-dimension parameter were introduced into the continuum constitutive relation, which was suggested by many scholars [64, 65]. Wei and Hutchinson performed a strain gradient plasticity theory on the crack growth and fracture problem [66], and Nix and Gao applied it with the indentation of crystalline materials [42]. Gao et al. proposed a mechanism-based strain gradient plasticity (MSG) theory [67, 68] established from the Taylor dislocation model [69, 70]. This mechanism-based theory gave a reasonable explanation of the length parameter introduced by the strain gradient. Based on the MSG theory, Huang et al. introduced a conventional theory of mechanism-based strain gradient plasticity (CMSG) [43, 44, 71, 72], which avoids the higher-order boundary conditions and hence is more feasible than earlier theories.

The taylor dislocation model gives the relation between dislocation density and the shear flow stress \(\tau\) as

$$\tau = \alpha \mu b\sqrt \rho = \alpha \mu b\sqrt {\rho_{{\text{S}}} + \rho_{{\text{G}}} }$$
(10)

where \(b\) is the magnitude of the Burgers vector, and \(\mu\) the shear modulus, \(\alpha\) an empirical parameter taking a value in the range from 0.2 to 0.5 for most materials, and \(\rho\) the total dislocation density, composed by the statistically stored dislocation (SSD) density \(\rho_{{\text{S}}}\) and the geometrically necessary dislocation (GND) density \(\rho_{{\text{G}}}\).

The flow stress \(\sigma_{{{\text{flow}}}}\) is related to the shear flow stress by

$$\sigma_{{{\text{flow}}}} = M\tau = M\alpha \mu b\sqrt {\rho_{{\text{S}}} + \rho_{{\text{G}}} }$$
(11)

with the Taylor factor \(M = 3.06\) for most face-centered-cubic (fcc) metals. In the uniaxial test, \(\rho_{{\text{S}}}\) can be determined where \(\rho_{{\text{G}}}\) equals zero,

$$\rho_{{\text{S}}} = \left( {\frac{{\sigma_{{{\text{flow}}}} }}{M\alpha \mu b}} \right)^{2} ,$$
(12)

and \(\rho_{{\text{G}}}\) is related to the effective plastic strain gradient \(\eta^{p}\) by

$$\rho_{{\text{G}}} = \overline{r}\frac{{\eta^{p} }}{b}$$
(13)

introduced by Nye with a factor of \(\overline{r} = 1.90\) for fcc metals. Thus, in a microscopic view, the flow stress is

$$\sigma_{{{\text{flow}}}} = M\tau = M\alpha \mu b\sqrt {\rho_{{\text{S}}} + \overline{r}\frac{{\eta^{p} }}{b}} .$$
(14)

Meanwhile, in a macroscopic view, the flow stress is also

$$\sigma_{{{\text{flow}}}} = \sigma_{{\text{Y}}} f\left( {\varepsilon^{p} } \right)$$
(15)

where \(\sigma_{{\text{Y}}}\) is the initial yield stress, \(\varepsilon^{p}\) is the effective plastic strain, and the function \(f\) between them can be determined by the uniaxial tension test. One of the most used models is the power-law work-hardening model,

$$f\left( {\varepsilon^{p} } \right) = \left( {1 + \frac{{E\varepsilon^{p} }}{{\sigma_{{\text{Y}}} }}} \right)^{n} ,$$
(16)

where \(E\) is the elastic modulus and \(n\) the work-hardening exponent. Linking the microscopic laws with the macroscopic ones, the SSD density \(\rho_{{\text{S}}}\) is

$$\rho_{{\text{S}}} = \left( {\frac{{\sigma_{{\text{Y}}} f\left( {\varepsilon^{p} } \right)}}{M\alpha \mu b}} \right)^{2} , $$
(17)

and from Eq. (14),

$$\sigma_{{\text{flow }}} = \sqrt {\left[ {\sigma_{{\text{Y}}} f\left( {\varepsilon^{p} } \right)} \right]^{2} + (M\alpha \mu b)^{2} \overline{r}\frac{{\eta^{p} }}{b}} = \sigma_{{\text{Y}}} \sqrt {f^{2} \left( {\varepsilon^{p} } \right) + l\eta^{p} }$$
(18)

where \(l\) is introduced as the material intrinsic length by Gao et al. [67], where

$$l = M^{2} \overline{r}\alpha^{2} \left( {\frac{\mu }{{\sigma_{{\text{Y}}} }}} \right)^{2} b \approx 18\alpha^{2} \left( {\frac{\mu }{{\sigma_{{\text{Y}}} }}} \right)^{2} b .$$
(19)

The calculation of the effective plastic strain gradient \(\eta^{p}\) in Eq. (13) is proposed by Gao et al. as

$$\eta^{p} = \sqrt {\frac{1}{4}\eta_{ijk}^{p} \eta_{ijk}^{p} } ,$$
(20)
$$\eta_{ijk}^{p} = \varepsilon_{ik,j}^{p} + \varepsilon_{jk,i}^{p} - \varepsilon_{ij,k}^{p}$$
(21)

where \(\varepsilon_{ij}^{p}\) is the plastic strain tensor. The numerical calculation of \(\eta^{p}\) in an axisymmetric model could be referred to Swaddiwudhipong et al.’s work [45].

Huang et al. suggested a visco-plastic formula to relate the effective stress \(\sigma_{{\text{e}}}\) directly to the plastic strain rate \(\dot{\varepsilon }^{p}\) to avoid the involvement of the higher-order effective stress rate \(\dot{\sigma }_{{\text{e}}}\) by setting a large value of the exponent \(m,m \ge 20\). Together with Eq. (18), the effective strain gradient is introduced by the flow stress as

$$\dot{\varepsilon }^{p} = \dot{\varepsilon }\left( {\frac{{\sigma_{{\text{e}}} }}{{\sigma_{{\text{flow }}} }}} \right)^{m} = \dot{\varepsilon }\left( {\frac{{\sigma_{{\text{e}}} }}{{\sigma_{{\text{Y}}} \sqrt {f^{2} \left( {\varepsilon^{p} } \right) + l\eta^{p} } }}} \right)^{m}$$
(22)

where \(\dot{\varepsilon } = \sqrt {\frac{2}{3}\dot{\varepsilon }_{ij}^{\prime } \dot{\varepsilon }_{ij}^{\prime } }\) is the effective strain rate.

Thus, similar to the conventional plasticity theory, the strain rate is composed of the elastic part and the plastic part as

$$\dot{\varepsilon }_{ij} = \dot{\varepsilon }_{ij}^{e} + \dot{\varepsilon }_{ij}^{p} = \frac{1}{2\mu }\dot{\sigma }_{ij}^{\prime } + \frac{{\dot{\sigma }_{kk} }}{9K}\delta_{ij} + \frac{{3\dot{\varepsilon }^{p} }}{{2\sigma_{{\text{e}}} }}\sigma_{ij}^{\prime } ,$$
(23)

and the elastic strain rate is

$$\dot{\varepsilon }_{ij}^{e} = \frac{1}{2\mu }\dot{\sigma }_{ij}^{\prime } + \frac{{\dot{\sigma }_{kk} }}{9K}\delta_{ij}$$
(24)

where \(\dot{\sigma }_{ij}^{\prime }\) is the deviatoric stress rate, \(K\) the bulk modulus, and \(\delta_{ij}\) the Kronecker delta. Hence, with \(\dot{\varepsilon }_{kk} = \frac{{\dot{\sigma }_{kk} }}{3K}\), the deviatoric strain rate is

$$\dot{\varepsilon }_{ij}^{\prime } = \dot{\varepsilon }_{ij} - \frac{1}{3}\dot{\varepsilon }_{kk} \delta_{ij} = \frac{1}{2\mu }\dot{\sigma }_{ij}^{\prime } + \frac{{3\dot{\varepsilon }^{p} }}{{2\sigma_{{\text{e}}} }}\sigma_{ij}^{\prime } ,$$
(25)

Substituting Eq. (22) into Eq. (25), the deviatoric strain rate is related to the effective strain gradient by

$$\dot{\varepsilon }_{ij}^{\prime } = \frac{1}{2\mu }\dot{\sigma }_{ij}^{\prime } + \frac{{3\dot{\varepsilon }}}{{2\sigma_{{\text{e}}} }}\left( {\frac{{\sigma_{{\text{e}}} }}{{\sigma_{{\text{Y}}} \sqrt {f^{2} \left( {\varepsilon^{p} } \right) + l\eta^{p} } }}} \right)^{m} \sigma_{ij}^{\prime }$$
(26)

which is commonly written as

$$\dot{\sigma }_{ij} = K\dot{\varepsilon }_{kk} \delta_{ij} + 2\mu \left[ {\dot{\varepsilon }_{ij}^{\prime } - \frac{{3\dot{\varepsilon }}}{{2\sigma_{{\text{e}}} }}\left( {\frac{{\sigma_{{\text{e}}} }}{{\sigma_{{\text{Y}}} \sqrt {f^{2} \left( {\varepsilon^{p} } \right) + l\eta^{p} } }}} \right)^{m} \sigma_{ij}^{\prime } } \right] .$$
(27)

Equation (27) suggested by Huang et al. is the constitutive relation with the consideration of the plastic strain gradient by introducing a material intrinsic length. With this length-dimension parameter, the difference between size-scales of the material can be hence depicted. When \(l \to 0\) or correspondingly the length scale of deformation is much larger than the material intrinsic length, the CMSG theory degenerates into the conventional theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Lin, Z. & Wei, Y. Investigation on cross-scale indentation scaling relationships of elastic–plastic solids. Acta Mech 232, 1479–1496 (2021). https://doi.org/10.1007/s00707-020-02913-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02913-2

Navigation