Skip to main content
Log in

Noether’s theorem for variational problems of Herglotz type with real and complex order fractional derivatives

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A variational principle of Herglotz type with a Lagrangian that depends on fractional derivatives of both real and complex orders is formulated, and the invariance of this principle under the action of a local group of symmetries is determined. By the Noether theorem the conservation law for the corresponding fractional Euler–Lagrange equation is obtained. A sequence of approximations of a fractional Euler–Lagrange equation by systems of integer order equations is used for the construction of a sequence of conservation laws which, with certain assumptions, weakly converge to the one for the basic Herglotz variational principle. Results are illustrated by two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vujanovic, B.D., Atanackovic, T.M.: An Introduction to Modern Variational Techniques in Mechanics and Engineering. Springer, New York (2004)

    Book  Google Scholar 

  2. Vujanovic, B.D., Jones, S.E.: Variational Methods in Nonconservative Phenomena. Academic Press, Boston (1989)

    MATH  Google Scholar 

  3. Herglotz, G.: Berührungstransformationen, Lectures at the University of Göttingen, Göttingen (1930). Gesammelte Schriften/Gustav Herglotz, by Hans Schwerdtfeger. Vandenhoeck and Ruprecht, Göttingen and Zürich (1979)

  4. Lazo, M.J., Paiva, J.J., Amaral, J.T.S., Frederico, G.S.F.: An action principle for action-dependent Lagrangians: toward an action principle to non-conservative systems. J. Math. Phys. 59, 032902 (2018). https://doi.org/10.1063/1.5019936

    Article  MathSciNet  MATH  Google Scholar 

  5. Cresson, J., Szafrańska, A.: About the Noether’s theorem for fractional Lagrangian systems and a generalization of the classical Jost method of proof. Fract. Calc. Appl. Anal. 22, 871–898 (2019)

    Article  MathSciNet  Google Scholar 

  6. Georgieva, B.: Noether-type theorems for the gneralized variational principle of Herglotz, Disseratation for the Degree of Doctor of Philosophy in Mathematics Presented on June 5. Oregon State University, USA (2001)

  7. Georgieva, B., Guenther, R.: Second Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 26, 307–314 (2005)

    Article  MathSciNet  Google Scholar 

  8. Georgieva, B., Guenther, R.: First Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 20, 26–273 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Georgieva, B.: The variational principle of Hergloz and ralated results. In: Proceedings of the Thirteenth International Conference on Geometry, Integrability and Quantization, June 3–8, 2011, Varna, Bulgaria. Avangard Prima, Sofia, pp. 214–225 (2012)

  10. Almeida, R., Malinowska, A.B.: Fractional variational principle of Herglotz. Discrete Contin. Dyn. Syst. Ser. B 19, 2367–2381 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Garra, R., Taverna, G.S., Torres, D.F.M.: Fractional Herglotz variational principles with generalized Caputo derivatives. Chaos Solitons Fractals 102, 94–98 (2017)

    Article  MathSciNet  Google Scholar 

  12. Cresson, J.: Fractional embeding of differential operators and Lagrangian systems. J. Math. Phys. 48, 033504 (2006). https://doi.org/10.1063/1.2483292

    Article  MATH  Google Scholar 

  13. Tian, X., Zhang, Y.: Noether symmetry and conserved quantities of fractional Birkhoffian system in terms of Herglotz variational problem. Commun. Theor. Phys. 70, 280–288 (2018)

    Article  MathSciNet  Google Scholar 

  14. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  15. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  16. Agrawal, O.P.F.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  Google Scholar 

  17. Agrawal, O.P.F.: Fractional variational calculus and the transversality conditions. J. Phys. A 39, 10375–10384 (2006)

    Article  MathSciNet  Google Scholar 

  18. Agrawal, O.P.F.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A 40, 6287–6303 (2007)

    Article  MathSciNet  Google Scholar 

  19. Atanackovic, T.M., Konjik, S., Pilipovic, S.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A 41, 095201 (2008)

    Article  MathSciNet  Google Scholar 

  20. Atanackovic, T.M., Konjik, S., Pilipovic, S., Simic, S.: Variational problems with fractional derivatives: invariance conditions and Noether’s theorem. Nonlinear Anal. 71, 1504–1517 (2009)

    Article  MathSciNet  Google Scholar 

  21. Atanackovic, T.M., Janev, M., Pilipovic, S., Zorica, D.: Euler–Lagrange equations for Lagrangians containing complex order fractional derivatives. J. Optim. Theory Appl. 174, 256–275 (2017)

    Article  MathSciNet  Google Scholar 

  22. Atanackovic, T.M., Konjik, S.: Variational principles with fractional derivatives. In: Kochubei, A., Luchko, Y. (eds.) Volume 1: Handbook of Fractional Calculus with Applications, pp. 361–383. De Gruyter, Berlin (2019)

    Google Scholar 

  23. Atanackovic, T.M., Konjik, S., Pilipovic, S.: Wave equation involving fractional derivatives of real and complex order. In: Kochubei, A., Luchko, Y. (eds.) Volume 2: Handbook of Fractional Calculus with Applications, pp. 327–351. De Gruyter, Berlin (2019)

    Google Scholar 

  24. Atanackovic, T.M., Konjik, S., Pilipovic, S.: Variational problems of Herglotz type with complex order fractional derivatives and less regular Lagrangian. Acta Mech. 230, 4357–4365 (2019)

    Article  MathSciNet  Google Scholar 

  25. Almeida, R., Torres, D.F.M.: A survey on fractional variational calculus. In: Kochubei, A., Luchko, Y. (eds.) Volume 1: Handbook of Fractional Calculus with Applications, pp. 347–360. De Gruyter, Berlin (2019)

    Google Scholar 

  26. Zhou, Y., Zhang, Y.: Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives. Acta Mech. (2020). https://doi.org/10.1007/s00707-020-02690-y

    Article  MathSciNet  MATH  Google Scholar 

  27. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  28. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)

    MATH  Google Scholar 

  29. Santos, S.P.S., Martins, N., Torres, D.F.M.: Higher-order variational problems of Herglotz type. Vietnam J. Math. 42, 409–419 (2014)

    Article  MathSciNet  Google Scholar 

  30. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag–Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by the Projects F-64 and F-10 of Serbian Academy of Sciences and Arts (TMA and SP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Janev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We derive the infinitesimal criteria IC\(_N\) for the approximate problem (29) given by (40).

Proposition 7.1

Let \({L_N}\in C^{1}([a,T]\times {\mathbb {R}}^{N+2})\) . The necessary and sufficient condition that the vector field \(\tau _N\frac{\partial }{\partial t}+\xi _N\frac{\partial }{\partial u}\) generates a local one-parameter symmetry group of ( 29 ) if and only if ( 40 ) holds.

Proof

From (29) one obtains

$$\begin{aligned} z(t) = \gamma +\int _a^t L_N(s,u(s),u^{\prime }(s),\ldots ,u^{N}(s),z(s))\mathrm{d}s,\ t \in [a,T]. \end{aligned}$$
(53)

Recall that \(\Delta z(t) = \int _a^t \delta L_N \mathrm{d}s + \left. L_N\tau _N\right| _a^t\) (\(\delta \gamma = 0\)). Moreover, we have

$$\begin{aligned}&\delta L_N = \frac{\partial L_N}{\partial u}\delta u + \frac{\partial L_N }{\partial u^{\prime }}\delta \left( u^{\prime }\right) + \cdots + \frac{ \partial L_N}{\partial u^{N}}\delta \left( u^{N}\right) + \frac{\partial L_N}{ \partial z}\delta z \end{aligned}$$
(54.1)
$$\begin{aligned}&\quad \qquad \,\, = \frac{\partial L_N}{\partial u}\delta u + \frac{\partial L_N}{\partial u^{\prime }} (\delta u)^{\prime } + \cdots + \frac{\partial L_N}{\partial u^{N} }\delta (\delta u)^{(N)} + \frac{\partial L_N}{\partial z}\delta z \end{aligned}$$
(54.2)

(recall, \(\frac{\mathrm{d}}{\mathrm{d}t}\delta (\cdot ) = \delta \frac{\mathrm{d}}{\mathrm{d}t}(\cdot )\).) Using \( \Delta u = \delta u + {\dot{u}}\tau \), \(\Delta z = \delta z + {\dot{z}}\tau = \delta z + L_N\tau \), from (53) and (54.2) we obtain

$$\begin{aligned} \Delta z(t)= & {} \int _{a}^{t}\left[ \frac{\partial L_{N}}{\partial u}(\Delta u-{\dot{u}} \tau )+\frac{\partial L_{N}}{\partial u^{\prime }}(\Delta u-{\dot{u}}\tau )^{\cdot }+\cdots +\frac{\partial L_{N}}{\partial u^{(N)}}(\Delta u-{\dot{u}} \tau )^{(N)}\right. \\&\left. +\,\frac{\partial L_{N}}{\partial z}(\Delta z-L_{N}\tau )+{\dot{L}}_{N}\tau +L_{N}{\dot{\tau }}\right] \mathrm{d}s, \nonumber \end{aligned}$$
(55)

where we use \(L_{N}\tau |_{a}^{t}=\int _{a}^{t}({\dot{L}}_{N}\tau +L_{N}\dot{ \tau })\mathrm{d}s\). Since

$$\begin{aligned} {\dot{L}}_N= & {} \frac{\mathrm{d}}{\mathrm{d}t}L_N(t,u(t),u^{\prime }(t),\ldots ,u^{(N)},z(t)) \nonumber \\= & {} \frac{\partial L_N}{\partial t} + \frac{\partial L_N}{\partial u}{\dot{u}} + \frac{\partial L_N}{\partial {\dot{u}}}\ddot{u} + \cdots + \frac{\partial L_N }{\partial u^{(N)}}u^{(N+1)} + \frac{\partial L_N}{\partial z}L_N \end{aligned}$$
(56)

where we use \({\dot{z}} = L_N\), it follows

$$\begin{aligned} \Delta z(t)= & {} \int _{a}^{t}\left\{ \frac{\partial L_{N}}{\partial u}(\Delta u-{\dot{u}} \tau )+\frac{\partial L_{N}}{\partial u}(\Delta u-{\dot{u}}\tau )^{\cdot }+\cdots +\frac{\partial L_{N}}{\partial u^{(N)}}(\Delta u-{\dot{u}}\tau )^{(N)} \right. \nonumber \\&+\,\frac{\partial L_{N}}{\partial z}\Delta z-\frac{\partial L_{N}}{ \partial z}L_{N}\tau +\frac{\partial L_{N}}{\partial t}\tau +\frac{\partial L_{N}}{\partial u} {\dot{u}}\tau +\frac{\partial L_{N}}{\partial {\dot{u}}}\ddot{u}\tau +\cdots + \frac{\partial L_{N}}{\partial u^{(N)}}u^{(N+1)}\tau \nonumber \\&\left. +\,\frac{\partial L_{N}}{ \partial z}L_{N}\tau +L_{N}{\dot{\tau }} \right\} \mathrm{d}s, \end{aligned}$$
(57)

and after cancellation of terms \({\mp } \frac{\partial L_{N}}{\partial u}{\dot{u}} \tau \) \({\mp } \frac{\partial L_{N}}{\partial z}L_{N}\tau \) and differentiation we obtain

$$\begin{aligned} ({\Delta z})^{\cdot } - \frac{\partial L_N}{\partial z}\Delta z = \frac{ \partial L_N}{\partial u}\xi + \sum _{i=1}^{N}(\xi - {\dot{u}}\tau )^{(i)}\frac{ \partial L_N}{\partial u^{(i)}} + \frac{\partial L_N}{\partial t}\tau + \left( \sum _{i=1}^{N}\frac{\partial L_N}{\partial u^{(i+1)}} \right) \tau + L_N{\dot{\tau }} \end{aligned}$$
(58)

since \(\Delta u = \xi \). Next, by multiplying (58) with \(\lambda _N\) and using \(\frac{\mathrm{d}}{\mathrm{d}t}\lambda _N(t) = -\frac{\partial L_N}{\partial z} \lambda _N(t)\), we obtain

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\left( \lambda _N\Delta z \right) = \lambda _N\left( \frac{\partial L_N}{ \partial u}\xi + \sum _{i=1}^{N}(\xi - {\dot{u}}\tau )^{(i)}\frac{\partial L_N}{ \partial u^{(i)}} + \frac{\partial L_N}{\partial t}\tau + \left( \sum _{i=1}^{N}\frac{\partial L_N}{\partial u^{(i+1)}} \right) \tau + L_N\dot{ \tau }\right) , \end{aligned}$$
(59)

and then after integrating and using \(\Delta z(a)=0\), we have

$$\begin{aligned} \lambda _N(t)\Delta z(t)= & {} \int _a^t \lambda _N(s)\left( \frac{\partial L_N}{\partial u}\xi + \sum _{i=1}^{N}(\xi - {\dot{u}}\tau )^{(i)}\frac{\partial L_N}{\partial u^{(i)}} + \frac{\partial L_N}{\partial t}\tau \right. \nonumber \\&+ \,\left. \left( \sum _{i=1}^{N}\frac{ \partial L_N}{\partial u^{(i+1)}} \right) \tau + L_N{\dot{\tau }}\right) \mathrm{d}s. \end{aligned}$$
(60)

Since \(\lambda (t) > 0 \), \(t\in [a,T]\) and \(\Delta z(t)=0\), the invariance criterion is equivalent to

$$\begin{aligned} \frac{\partial L_N}{\partial u}\xi + \sum _{i=1}^{N}(\xi - {\dot{u}}\tau )^{(i)} \frac{\partial L_N}{\partial u^{(i)}} + \frac{\partial L_N}{\partial t}\tau + \left( \sum _{i=1}^{N}\frac{\partial L_N}{\partial u^{(i+1)}} \right) \tau + L_N{\dot{\tau }} = 0,\; t\in [a,T]. \end{aligned}$$

This is equivalent to (40). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanacković, T.M., Janev, M. & Pilipović, S. Noether’s theorem for variational problems of Herglotz type with real and complex order fractional derivatives. Acta Mech 232, 1131–1146 (2021). https://doi.org/10.1007/s00707-020-02893-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02893-3

Navigation