Skip to main content
Log in

A co-rotational triangular finite element for large deformation analysis of smooth, folded and multi-shells

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A six-node co-rotational curved triangular shell finite element with a novel rotation treatment for folded and multi-shell structures is presented. Different from other co-rotational triangular element formulations, rotations are not represented by axial (pseudo) vectors, but by components of polar (proper) vectors, of which additivity and commutativity lead to symmetry of the tangent stiffness matrices in both local and global coordinate systems. In the co-rotational local coordinate system, the two smallest components of the shell director are defined as the nodal rotational variables. Similarly, the two smallest components of each director in the global coordinate system are adopted as the global rotational variables for nodes located either on smooth shells or away from non-smooth shell intersections. At intersections of folded and multi-shells, global rotational variables are defined as three selected components of an orthogonal triad initially oriented along the global coordinate system axes. As such, the vectorial rotational variables enable simple additive update of all nodal variables in an incremental-iterative procedure, resulting in significant enhancement in computational efficiency for large deformation analysis. To alleviate membrane and shear locking phenomena, an assumed strain method is employed in obtaining the element tangent stiffness matrices and the internal force vector. The effectiveness of the presented co-rotational triangular shell element formulation is verified by analyzing several benchmark problems of smooth, folded and multi-shell structures undergoing large displacements and large rotations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Altenbach, H., Eremeyev, V.: Shell-Like Structures: Advanced Theories and Applications. Springer (2017). https://link.springer.com/book/10.1007/978-3-319-42277-0

  2. Pietraszkiewicz, W., Witkowski, W.: Shell Structures: Theory and Applications, Volume 4. CRC Press, Balkema (2018).https://doi.org/10.1201/9781315166605

  3. Altenbach, H., Chróścielewski, J., Eremeev, V., Wiśniewski, K.: Recent Developments in the Theory of Shells. Springer (2019).https://doi.org/10.1007/978-3-030-17747-8

  4. Pietraszkiewicz, W., Konopinska, V.: Junctions in shell structures: a review. Thin Wall. Struct. 95, 310–334 (2015). https://doi.org/10.1016/j.tws.2015.07.010

    Article  Google Scholar 

  5. Lu, X.Z., Tian, Y., Sun, C.J., Zhang, S.H.: Development and application of a high-performance triangular shell element and an explicit algorithm in OpenSees for strongly nonlinear analysis. CMES-Comp. Model Eng. 120(3), 561–582 (2019). https://doi.org/10.32604/cmes.2019.04770

    Article  Google Scholar 

  6. Schellenberg, A.H., Huang, Y.L., Mahin, S.A.: Structural finite element software coupling using adapter elements. CMES-Comp. Model Eng. 120(3), 719–737 (2019). https://doi.org/10.32604/cmes.2019.04835

    Article  Google Scholar 

  7. Argyris, J.H., Balmer, H., Doltsinis, J.S., Dunne, P.C., Haase, M., Kleiber, M., Malejannakis, G.A., Mlejnek, H.P., Muller, M., Scharpf, D.W.: Finite-element method—natural approach. Comput. Methods Appl. Mech. Eng. 17–8(1), 1–106 (1979). https://doi.org/10.1016/0045-7825(79)90083-5

    Article  MATH  Google Scholar 

  8. Simo, J.C.: A finite strain beam formulation—the 3-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985). https://doi.org/10.1016/0045-7825(85)90050-7

    Article  MATH  Google Scholar 

  9. Ibrahimbegovic, A.: Stress resultant geometrically nonlinear shell theory with drilling rotations. 1. A consistent formulation. Comput. Methods Appl. Mech. Eng. 118(3–4), 265–284 (1994). https://doi.org/10.1016/0045-7825(94)90003-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Ibrahimbegovic, A., Frey, F.: Stress resultant geometrically nonlinear shell theory with drilling rotations. 2. Computational aspects. Comput. Methods Appl. Mech. Eng. 118(3–4), 285–308 (1994). https://doi.org/10.1016/0045-7825(94)90004-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Ibrahimbegovic, A., Frey, F.: Stress resultant geometrically nonlinear shell theory with drilling rotations. 3. Linearized kinematics. Int. J. Numer. Methods Eng. 37(21), 3659–3683 (1994). https://doi.org/10.1002/nme.1620372106

    Article  MATH  Google Scholar 

  12. Chroscielewski, J., Kreja, I., Sabik, A., Witkowski, W.: Modeling of composite shells in 6-parameter nonlinear theory with drilling degree of freedom. Mech. Adv. Mater. Struct. 18(6), 403–419 (2011). https://doi.org/10.1080/15376494.2010.524972

    Article  Google Scholar 

  13. Chróścielewski, J., Makowski, J., Stumpf, H.: Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int. J. Numer. Methods Eng. 35(1), 63–94 (1992). https://doi.org/10.1002/nme.1620350105

    Article  MATH  Google Scholar 

  14. Fox, D.D., Simo, J.C.: A drill rotation formulation for geometrically exact shells. Comput. Methods Appl. Mech. Eng. 98(3), 329–343 (1992). https://doi.org/10.1016/0045-7825(92)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Witkowski, W.: 4-Node combined shell element with semi-EAS-ANS strain interpolations in 6-parameter shell theories with drilling degrees of freedom. Comput. Mech. 43(2), 307–319 (2009). https://doi.org/10.1007/s00466-008-0307-x

    Article  MATH  Google Scholar 

  16. Ibrahimbegovic, A., Wilson, E.L.: A unified formulation for triangular and quadrilateral flat shell finite-elements with 6 nodal degrees of freedom. Commun. Appl. Numer. M. 7(1), 1–9 (1991). https://doi.org/10.1002/cnm.1630070102

    Article  MATH  Google Scholar 

  17. Kebari, H., Cassell, A.C.: Non-conforming modes stabilization of a 9-node stress-resultant degenerated shell element with drilling freedom. Comput. Struct. 40(3), 569–580 (1991). https://doi.org/10.1016/0045-7949(91)90227-D

    Article  MATH  Google Scholar 

  18. Simo, J.C., Fox, D.D., Rifai, M.S.: On a stress resultant geometrically exact shell-model. 2. The linear-theory—computational aspects. Comput. Methods Appl. Mech. Eng. 73(1), 53–92 (1989). https://doi.org/10.1016/0045-7825(89)90098-4

    Article  MathSciNet  MATH  Google Scholar 

  19. Dornisch, W., Klinkel, S.: Treatment of Reissner-Mindlin shells with kinks without the need for drilling rotation stabilization in an isogeometric framework. Comput. Methods Appl. Mech. Eng. 276, 35–66 (2014). https://doi.org/10.1016/j.cma.2014.03.017

    Article  MathSciNet  MATH  Google Scholar 

  20. Vu-Quoc, L., Tan, X.G.: Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Comput. Methods Appl. Mech. Eng. 192(9–10), 975–1016 (2003). https://doi.org/10.1016/S0045-7825(02)00435-8

    Article  MATH  Google Scholar 

  21. Hauptmann, R., Schweizerhof, K.: A systematic development of ‘solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int. J. Numer. Methods Eng. 42(1), 49–69 (1998). https://doi.org/10.1002/(SICI)1097-0207(19980515)42:1%3c49:AID-NME349%3e3.3.CO;2-U

    Article  MATH  Google Scholar 

  22. Sze, K.Y., Chan, W.K., Pian, T.H.H.: An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells. Int. J. Numer. Methods Eng. 55(7), 853–878 (2002). https://doi.org/10.1002/nme.535

    Article  MATH  Google Scholar 

  23. Sze, K.Y., Zheng, S.J.: A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses. Comput. Methods Appl. Mech. Eng. 191(17–18), 1945–1966 (2002). https://doi.org/10.1016/S0045-7825(01)00362-0

    Article  MATH  Google Scholar 

  24. Sze, K.Y., Yao, L.Q.: A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I—solid-shell element formulation. Int. J. Numer. Methods Eng. 48(4), 545–564 (2000). https://doi.org/10.1002/(sici)1097-0207(20000610)48:4%3c545:AID-NME889%3e3.3.CO;2-Y

    Article  MATH  Google Scholar 

  25. Li, Z.X., Li, T.Z., Vu-Quoc, L., Izzuddin, B.A., Zhuo, X., Fang, Q.L.: A 9-node co-rotational curved quadrilateral shell element for smooth, folded and multi-shell structures. Int. J. Numer. Methods Eng. 116(8), 570–600 (2018). https://doi.org/10.1002/nme.5936

    Article  Google Scholar 

  26. Li, Z.X., Xiang, Y., Izzuddin, B.A., Vu-Quoc, L., Zhuo, X., Zhang, C.J.: A 6-node co-rotational triangular elasto-plastic shell element. Comput. Mech. 55(5), 837–859 (2015). https://doi.org/10.1007/s00466-015-1138-1

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Z.X., Vu-Quoc, L.: An efficient co-rotational formulation for curved triangular shell element. Int. J. Numer. Methods Eng. 72(9), 1029–1062 (2007). https://doi.org/10.1002/nme.2064

    Article  MathSciNet  MATH  Google Scholar 

  28. Koschnick, F., Bischoff, M., Camprubi, N., Bletzinger, K.U.: The discrete strain gap method and membrane locking. Comput. Methods Appl. Mech. Eng. 194(21–24), 2444–2463 (2005). https://doi.org/10.1016/j.cma.2004.07.040

    Article  MATH  Google Scholar 

  29. Bletzinger, K.U., Bischoff, M., Ramm, E.: A unified approach for shear-locking-free triangular and rectangular shell finite elements. Comput. Struct. 75(3), 321–334 (2000). https://doi.org/10.1016/S0045-7949(99)00140-6

    Article  Google Scholar 

  30. Brank, B., Peric, D., Damjanic, F.B.: on implementation of a nonlinear 4 node shell finite-element for thin multilayered elastic shells. Comput. Mech. 16(5), 341–359 (1995). https://doi.org/10.1007/bf00350723

    Article  MATH  Google Scholar 

  31. Parisch, H.: An investigation of a finite rotation 4 node assumed strain shell element. Int. J. Numer. Methods Eng. 31(1), 127–150 (1991). https://doi.org/10.1002/nme.1620310108

    Article  MATH  Google Scholar 

  32. Sze, K.Y., Liu, X.H., Lo, S.H.: Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem. Anal. Des. 40(11), 1551–1569 (2004). https://doi.org/10.1016/j.finel.2003.11.001

    Article  Google Scholar 

  33. Xiong, H., Maldonado, E.G., Hamila, N., Boisse, P.: A prismatic solid-shell finite element based on a DKT approach with efficient calculation of through the thickness deformation. Finite Elem. Anal. Des. 151, 18–33 (2018). https://doi.org/10.1016/j.finel.2018.08.003

    Article  Google Scholar 

  34. ANSYS Academic Research Mechanical, Release 19.3, 2019

  35. Chroscielewski, J., Makowski, J., Stumpf, H.: Finite element analysis of smooth, folded and multi-shell structures. Comput. Methods Appl. Mech. Eng. 141(1–2), 1–46 (1997). https://doi.org/10.1016/S0045-7825(96)01046-8

    Article  MATH  Google Scholar 

  36. ANSYS, Inc. Theory Reference Release 18.0. December 2016

  37. Crisfield, M.A.: Nonlinear Finite Element Analysis of Solid and Structures, Vol. 1: Essentials. Wiley, Chichester (1991)

  38. Crisfield, M.A.: Nonlinear Finite Element Analysis of Solid and Structures, Vol. 2: Advanced topics. Wiley, Chichester (1996)

  39. Yang, H.T.Y., Saigal, S., Masud, A., Kapania, R.K.: Survey of recent shell finite elements. Int. J. Numer. Methods Eng. 47, 101–127 (2000). https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3%3c101:AID-NME763%3e3.0.CO;2-C

    Article  MathSciNet  MATH  Google Scholar 

  40. Izzuddin, B.A., Liang, Y.: Bisector and zero-macrospin co-rotational systems for shell elements. Int. J. Numer. Methods Eng. 105(4), 286–320 (2016). https://doi.org/10.1002/nme.4978

    Article  MathSciNet  Google Scholar 

  41. Tang, Y.Q., Liu, Y.P., Chan, S.L.: Element-independent pure deformational and co-rotational methods for triangular shell elements in geometrically nonlinear analysis. Int. J. Struct. Stab. Dyn. (2018). https://doi.org/10.1142/S0219455418500657

    Article  MathSciNet  Google Scholar 

  42. Simo, J.C., Tarnow, N.: A new energy and momentum conserving algorithm for the non-linear dynamics of shells. Int. J. Numer. Methods Eng. 37(15), 2527–2549 (1994). https://doi.org/10.1002/nme.1620371503

    Article  MathSciNet  MATH  Google Scholar 

  43. Simo, J.C., Rifai, M.S., Fox, D.D.: On a stress resultant geometrically exact shell-model. 6. Conserving algorithms for nonlinear dynamics. Int. J. Numer. Methods Eng. 34(1), 117–164 (1992). https://doi.org/10.1002/nme.1620340108

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, Y.B., Shieh, M.S.: Solution method for nonlinear problems with multiple critical points. AIAA J. 28(12), 2110–2116 (1990). https://doi.org/10.2514/3.10529

    Article  Google Scholar 

  45. Klinkel, S., Gruttmann, F., Wagner, W.: A mixed shell formulation accounting for thickness strains and finite strain 3D-material models. Int. J. Numer. Methods Eng. 74(6), 945–970 (2008). https://doi.org/10.1002/nme.2199

    Article  MATH  Google Scholar 

  46. Wagner, W., Gruttmann, F.: A robust non-linear mixed hybrid quadrilateral shell element. Int. J. Numer. Methods Eng. 64(5), 635–666 (2005). https://doi.org/10.1002/nme.1387

    Article  MATH  Google Scholar 

  47. Klinkel, S., Gruttmann, F., Wagner, W.: A robust non-linear solid shell element based on a mixed variational formulation. Comput. Methods Appl. Mech. Eng. 195, 179–201 (2006). https://doi.org/10.1016/j.cma.2005.01.013

    Article  MATH  Google Scholar 

  48. Tan, X.G., Vu-Quoc, L.: Efficient and accurate multilayer solid-shell element: nonlinear materials at finite strain. Int. J. Numer. Methods Eng. 63(15), 2124–2170 (2005). https://doi.org/10.1002/nme.1360

    Article  MATH  Google Scholar 

  49. Tan, X.G., Vu-Quoc, L.: Optimal solid shell element for large-deformable composite structures with piezoelectric layers and active vibration control. Int. J. Numer. Methods Eng. 64(15), 1981–2013 (2005). https://doi.org/10.1002/nme.1433

    Article  MATH  Google Scholar 

  50. Vu-Quoc, L., Tan, X.G.: Efficient hybrid-EAS solid element for accurate stress prediction in thick laminated beams, plates, and shells. Comput. Methods Appl. Mech. Eng. 253, 337–355 (2013). https://doi.org/10.1016/j.cma.2012.07.025

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 11672266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-xue Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix A: Various derivatives of strains with respect to local nodal variables

The first-order derivatives of membrane strains with respect to local nodal variables lead to the following gradient matrix:

$${\mathbf{B}}_{m} = \left[ {\begin{array}{*{20}c} {{\mathbf{B}}_{m1} } &\quad {\mathbf{0}} &\quad \ldots &\quad {{\mathbf{B}}_{m6} } &\quad {\mathbf{0}} \\ \end{array} } \right]$$
(47)

in which the sub-matrix is expressed as

$${\mathbf{B}}_{mi} = \left[ {\begin{array}{*{20}c} {N_{i,x} } &\quad 0 &\quad 0 \\ 0 &\quad {N_{i,y} } &\quad 0 \\ {N_{i,y} } &\quad {N_{i,x} } &\quad 0 \\ \end{array} } \right],\quad i = 1,2, \ldots ,6.$$
(48)

Following Eqs. (33a, b), the shape function derivatives can be expressed as follows:

$$N_{i,x} = J_{11}^{ - 1} N_{i,\xi } + J_{12}^{ - 1} N_{i,\eta },$$
(49)
$$N_{i,y} = J_{21}^{ - 1} N_{i,\xi } + J_{22}^{ - 1} N_{i,\eta },$$
(50)

where \(J_{jk}^{ - 1} \;\left( {j,k = 1,2} \right)\) is the component of the inverse Jacobian matrix at the jth row and kth column; \(N_{i,\xi }\) and \(N_{i,\eta }\) are, respectively, the first-order derivative of the shape function Ni with respect to \(\xi\) and \(\eta\).

The first-order derivatives of shear strains with respect to local nodal variables lead to the following gradient matrix:

$$\varvec{B}_{\gamma } = \left[ {\begin{array}{*{20}c} {\varvec{B}_{\gamma 1} } & {\varvec{B}_{\gamma 2} } & \ldots & {\varvec{B}_{\gamma 11} } & {\varvec{B}_{\gamma 12} } \\ \end{array} } \right]$$
(51)

in which

$${\mathbf{B}}_{\gamma (2i - 1)} = \left[ {\begin{array}{*{20}c} 0 &\quad 0 &\quad {N_{i,x} } \\ 0 &\quad 0 &\quad {N_{i,y} } \\ \end{array} } \right]\quad i = 1,2, \ldots ,6,$$
(52)
$${\mathbf{B}}_{\gamma (2i)} = \left[ {\begin{array}{*{20}c} {N_{i} } &\quad 0 \\ 0 &\quad {N_{i} } \\ \end{array} } \right]\quad i = 1,2, \ldots ,6.$$
(53)

The first-order derivatives of bending strains with respect to local nodal variables lead to the following gradient matrix:

$${\mathbf{B}}_{b} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {{\mathbf{B}}_{b1} } & \ldots & {\mathbf{0}} & {{\mathbf{B}}_{b6} } \\ \end{array} } \right]$$
(54)

in which

$${\mathbf{B}}_{bi} = \left[ {\begin{array}{*{20}c} {N_{i,x} } &\quad 0 \\ 0 &\quad {N_{i,y} } \\ {N_{i,y} } &\quad {N_{i,x} } \\ \end{array} } \right]\quad i = 1,2, \ldots ,6.$$
(55)

The first-order derivatives of assumed membrane strains with respect to local nodal variables lead to the following gradient matrix

$${\bar{\mathbf{B}}}_{m} = \left[ {\begin{array}{*{20}c} {{\bar{\mathbf{B}}}_{m1} } &\quad {\mathbf{0}} &\quad \ldots &\quad {{\bar{\mathbf{B}}}_{m6} } &\quad {\mathbf{0}} \\ \end{array} } \right]$$
(56)

in which the sub-matrix is expressed as

(57)

The first-order derivatives of assumed shear strains with respect to local nodal variables lead to the following gradient matrix:

$${\bar{\mathbf{B}}}_{\gamma } = \left[ {\begin{array}{*{20}c} {{\bar{\mathbf{B}}}_{\gamma 1} } & {{\bar{\mathbf{B}}}_{\gamma 2} } & \ldots & {{\bar{\mathbf{B}}}_{\gamma 11} } & {{\bar{\mathbf{B}}}_{\gamma 12} } \\ \end{array} } \right]$$
(58)

in which the sub-matrices are expressed as

(59)
$${\bar{\mathbf{B}}}_{\gamma (2i)} = \left[ {\begin{array}{*{20}c} {N_{j,x} \left( {\left. {\displaystyle\int_{{\xi_{1} }}^{{\xi_{j} }} {J_{1,1} N_{i} d\xi } } \right|\left. {_{{\eta = \eta_{j} }} + \displaystyle\int_{{\eta_{1} }}^{{\eta_{j} }} {J_{2,1} N_{i} d\eta } } \right|_{{\xi = \xi_{j} }} } \right)} & 0 \\ 0 & {N_{j,y} \left( {\left. {\displaystyle\int_{{\xi_{1} }}^{{\xi_{j} }} {J_{1,2} N_{i} d\xi } } \right|_{{\eta = \eta_{j} }} + \left. {\displaystyle\int_{{\eta_{1} }}^{{\eta_{j} }} {J_{2,2} N_{i} d\eta } } \right|_{{\xi = \xi_{j} }} } \right)} \\ \end{array} } \right],$$
(60)

1.2 Appendix B: Sub-matrices of transformation matrix T and its derivatives with respect to global nodal variables

The sub-matrices of the transformation matrix T can be expressed as

$$\frac{{\partial {\mathbf{t}}_{k} }}{{\partial {\mathbf{d}}_{l}^{T} }} = \frac{{\partial {\mathbf{R}}}}{{\partial {\mathbf{d}}_{l}^{T} }}({\mathbf{d}}_{k} + {\mathbf{v}}_{k0} ) + {\mathbf{R}}\delta_{kl} {\mathbf{I}} = \left( {\frac{\partial }{{\partial {\mathbf{d}}_{l}^{T} }}\left[ {\begin{array}{*{20}c} {{\mathbf{e}}_{x}^{T} } \\ {{\mathbf{e}}_{y}^{T} } \\ {{\mathbf{e}}_{z}^{T} } \\ \end{array} } \right]} \right)({\mathbf{d}}_{k} + {\mathbf{v}}_{k0} ) + {\mathbf{R}}\delta_{kl} {\mathbf{I}}.$$
(61)

If Node k is within a piece of smooth shell or away from intersections of non-smooth shells, two vectorial rotational variables are employed in the global coordinate system. Hence, the corresponding sub-matrices of \({\mathbf{T}}\) are evaluated as follows:

$$\frac{{\partial {\varvec{\uptheta}}_{k} }}{{\partial {\mathbf{d}}_{l}^{T} }} = \frac{{\partial {\mathbf{R}}_{h} }}{{\partial {\mathbf{d}}_{l}^{T} }}{\mathbf{p}}_{k} = \left( {\frac{\partial }{{\partial {\mathbf{d}}_{l}^{T} }}\left[ {\begin{array}{*{20}c} {{\mathbf{e}}_{x}^{T} } \\ {{\mathbf{e}}_{y}^{T} } \\ \end{array} } \right]} \right){\mathbf{p}}_{k},$$
(62)
$$\frac{{\partial {\varvec{\uptheta}}_{k} }}{{\partial {\mathbf{n}}_{gl}^{T} }} = {\mathbf{R}}_{h} \delta_{kl} \frac{{\partial {\mathbf{p}}_{k} }}{{\partial {\mathbf{n}}_{gl}^{T} }} = \left[ {\begin{array}{*{20}c} {{\mathbf{e}}_{x}^{T} } \\ {{\mathbf{e}}_{y}^{T} } \\ \end{array} } \right]\delta_{kl} \frac{{\partial {\mathbf{p}}_{k} }}{{\partial {\mathbf{n}}_{gl}^{T} }},$$
(63)
$$\frac{{\partial {\mathbf{e}}_{x} }}{{\partial {\mathbf{d}}_{l}^{T} }} = \left( {\frac{{\mathbf{I}}}{{\left| {{\mathbf{v}}_{12} } \right|}} - \frac{{{\mathbf{v}}_{12} \otimes {\mathbf{v}}_{12} }}{{\left| {{\mathbf{v}}_{12} } \right|^{3} }}} \right)\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{l}^{T} }},$$
(64)
$$\frac{{\partial {\mathbf{e}}_{z} }}{{\partial {\mathbf{d}}_{l}^{T} }} = \left[ {\frac{{\mathbf{I}}}{{\left| {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right|}} - \frac{{\left( {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right) \otimes \left( {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right)}}{{\left| {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right|^{3} }}} \right]\left( {\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{l}^{T} }} \times {\mathbf{v}}_{13} + {\mathbf{v}}_{12} \times \frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{l}^{T} }}} \right),$$
(65)
$$\frac{{\partial {\mathbf{e}}_{y} }}{{\partial {\mathbf{d}}_{l}^{T} }} = \frac{{\partial {\mathbf{e}}_{z} }}{{\partial {\mathbf{d}}_{l}^{T} }} \times {\mathbf{e}}_{x} + {\mathbf{e}}_{z} \times \frac{{\partial {\mathbf{e}}_{x} }}{{\partial {\mathbf{d}}_{l}^{T} }}.$$
(66)

In Eqs. (64)–(65), \(\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{l}^{T} }} = - {\mathbf{I}}\), \(l = 1\); \(\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{l} }} = {\mathbf{I}}\), \(l = 2\); \(\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{l}^{T} }} = 0\), \(l =\) 3, 4, 5 or 6; \(\frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{l}^{T} }} = - {\mathbf{I}}\), \(l = 1\); \(\frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{l}^{T} }} = {\mathbf{I}}\), \(l = 2\); \(\frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{l} }} = 0\), \(l =\) 2, 4, 5 or 6, and

$$\frac{{\partial {\mathbf{p}}_{k} }}{{\partial {\mathbf{n}}_{gk}^{T} }} = \left[ {\begin{array}{*{20}c} {\frac{{\partial p_{k,X} }}{{\partial p_{k,n} }}} & {\frac{{\partial p_{k,X} }}{{\partial p_{k,m} }}} \\ {\frac{{\partial p_{k,Y} }}{{\partial p_{k,n} }}} & {\frac{{\partial p_{k,Y} }}{{\partial p_{k,m} }}} \\ {\frac{{\partial p_{k,Z} }}{{\partial p_{k,n} }}} & {\frac{{\partial p_{k,Z} }}{{\partial p_{k,m} }}} \\ \end{array} } \right],$$
(67)

where \(p_{k,X}\), \(p_{k,Y}\), \(p_{k,Z}\) are the three components of the shell director \({\mathbf{p}}_{i}\) along the directions of the global coordinate axes; \(p_{k,n} ,p_{k,m}\) are the two vectorial rotational variables of Node \(i\), which are the two smallest components among \(p_{k,X}\), \(p_{k,Y}\), \(p_{k,Z}\); \(\frac{{\partial p_{k,n} }}{{\partial p_{k,n} }} = \frac{{\partial p_{k,m} }}{{\partial p_{k,m} }} = 1\); \(\frac{{\partial p_{k,n} }}{{\partial p_{k,m} }} = \frac{{\partial p_{k,m} }}{{\partial p_{k,n} }} = 0\); \(\frac{{\partial p_{k,l} }}{{\partial p_{k,n} }} = - \frac{{p_{k,n} }}{{p_{k,l} }}\) and \(\frac{{\partial p_{k,l} }}{{\partial p_{k,m} }} = - \frac{{p_{k,m} }}{{p_{k,l} }}\), \(l \ne n \ne m,\) \(l,n,m \in \left\{ {X,Y,Z} \right\}\).

If Node k is located at an intersection of non-smooth shells, three vectorial rotational variables are employed in the global coordinate system, which are the two smallest components of one vector and the smallest or second smallest component of another vector of an orthogonal triad oriented initially to three axes of the global coordinate system, and thus

$$\frac{{\partial {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} }} = \frac{{\partial {\mathbf{R}}_{h} }}{{\partial {\mathbf{d}}_{j}^{T} }}{\mathbf{R}}_{i}^{T} {\mathbf{R}}_{i0} {\mathbf{p}}_{i0} = \frac{\partial }{{\partial {\mathbf{d}}_{j}^{T} }}\left[ {\begin{array}{*{20}c} {{\mathbf{e}}_{x}^{T} } \\ {{\mathbf{e}}_{y}^{T} } \\ \end{array} } \right]{\mathbf{R}}_{i}^{T} {\mathbf{R}}_{i0} {\mathbf{p}}_{i0},$$
(68)
$$\frac{{\partial {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{n}}_{gj}^{T} }} = \delta_{ij} {\mathbf{R}}_{h} \frac{{\partial {\mathbf{R}}_{i}^{T} }}{{\partial {\mathbf{n}}_{gj}^{T} }}{\mathbf{R}}_{i0} {\mathbf{p}}_{i0} = \delta_{ij} {\mathbf{R}}_{h} \frac{\partial }{{\partial {\mathbf{n}}_{gj}^{T} }}\left[ {\begin{array}{*{20}c} {{\mathbf{e}}_{ix} } & {{\mathbf{e}}_{iy} } & {{\mathbf{e}}_{iz} } \\ \end{array} } \right]{\mathbf{R}}_{i0} {\mathbf{p}}_{i0}.$$
(69)

The first-order derivative on the right side of Eq. (68) is the same as Eqs. (64)–(66), and the first-order derivatives on the right side of Eq. (69) are evaluated as follows:

$$\frac{{\partial {\mathbf{e}}_{ix} }}{{\partial {\mathbf{n}}_{gi}^{T} }} = \frac{{\partial {\mathbf{e}}_{iy} }}{{\partial {\mathbf{n}}_{gi}^{T} }} \times {\mathbf{e}}_{iz} + {\mathbf{e}}_{iy} \times \frac{{\partial {\mathbf{e}}_{iz} }}{{\partial {\mathbf{n}}_{gj}^{T} }},$$
(70)
$$\frac{{\partial {\mathbf{e}}_{iy} }}{{\partial {\mathbf{n}}_{gi}^{T} }} = \left[ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{e}}_{iy} }}{{\partial e_{iy,n} }}} & {\frac{{\partial {\mathbf{e}}_{iy} }}{{\partial e_{iy,m} }}} & {\mathbf{0}} \\ \end{array} } \right],$$
(71)
$$\frac{{\partial {\mathbf{e}}_{iz} }}{{\partial {\mathbf{n}}_{gi}^{T} }} = \left[ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{e}}_{iz} }}{{\partial e_{iy,n} }}} & {\frac{{\partial {\mathbf{e}}_{iz} }}{{\partial e_{iy,m} }}} & {\frac{{\partial {\mathbf{e}}_{iz} }}{{\partial e_{iz,n} }}} \\ \end{array} } \right].$$
(72)

The components in Eqs. (70)–(72) are calculated as follows:

$$\frac{{\partial e_{{iy,n_{i} }} }}{{\partial e_{{iy,n_{i} }} }} = 1;\quad \frac{{\partial e_{iy,m} }}{{\partial e_{iy,m} }} = 1;\quad \frac{{\partial e_{iy,l} }}{{\partial e_{iy,n} }} = - \frac{{e_{iy,n} }}{{e_{iy,l} }};$$
(73a, b, c)
$$\frac{{\partial e_{iy,l} }}{{\partial e_{iy,m} }} = - \frac{{e_{iy,m} }}{{e_{iy,l} }};\quad \frac{{\partial e_{iz,n} }}{{\partial e_{iz,n} }} = 1;$$
(73d,e)
$$\frac{{\partial e_{iz,l} }}{{\partial e_{iy,n} }} = \frac{1}{{1 - e_{iy,n}^{2} }}\left( { - \frac{{\partial e_{iy,l} }}{{\partial e_{iy,n} }}e_{iy,n} e_{iz,n} - e_{iy,l} e_{iz,n} - s_{1} s_{3} e_{iy,m} \frac{{\partial c_{0} }}{{\partial e_{iy,n} }} + 2e_{iz,l} e_{iy,n} } \right),$$
(73f)
$$\frac{{\partial e_{iz,l} }}{{\partial e_{iy,m} }} = \frac{1}{{1 - e_{iy,n}^{2} }}\left( { - \frac{{\partial e_{iy,l} }}{{\partial e_{iy,m} }}e_{iy,n} e_{iz,n} - s_{1} s_{3} c_{0} } \right);$$
(73g)
$$\frac{{\partial e_{iz,l} }}{{\partial e_{iz,n} }} = \frac{1}{{1 - e_{iy,n}^{2} }}\left( { - e_{iy,l} e_{iy,n} - s_{1} s_{3} e_{iy,m} \frac{{\partial c_{0} }}{{\partial e_{iz,n} }}} \right);$$
(73h)
$$\frac{{\partial e_{iz,m} }}{{\partial e_{iy,n} }} = - \frac{{e_{iz,l} }}{{e_{iz,m} }}\frac{{\partial e_{iz,l} }}{{\partial e_{iy,n} }};\quad \frac{{\partial e_{iz,m} }}{{\partial e_{iy,m} }} = - \frac{{e_{iz,l} }}{{e_{iz,m} }}\frac{{\partial e_{iz,l} }}{{\partial e_{iy,m} }};$$
(73i,j)
$$\frac{{\partial e_{iz,m} }}{{\partial e_{iz,n} }} = \frac{{ - e_{iz,n} }}{{e_{iz,m} }} - \frac{{e_{iz,l} }}{{e_{iz,m} }}\frac{{\partial e_{iz,l} }}{{\partial e_{iz,n} }}.$$
(73k)

In Eqs. (73f)–(73h),

$$c_{0} = \sqrt {1 - e_{iy,n}^{2} - e_{iz,n}^{2} },$$
(74a)
$$\frac{{\partial c_{0} }}{{\partial e_{iy,n} }} = \frac{{ - e_{iy,n} }}{{c_{0} }},\quad \frac{{\partial c_{0} }}{{\partial e_{iz,n} }} = \frac{{ - e_{iz,n} }}{{c_{0} }}.$$
(74b, c)

The first-order derivatives of the transformation matrix \({\mathbf{T}}\) with respect to the global nodal variables lead to the following sub-matrices:

$$\frac{{\partial^{2} {\mathbf{t}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{u}}_{g}^{T} }} = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} {\mathbf{t}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{1}^{T} }}} & 0 & \ldots & {\frac{{\partial^{2} {\mathbf{t}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{6}^{T} }}} & 0 \\ \end{array} } \right],$$
(75)
$$\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{u}}_{g}^{T} }} = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{1}^{T} }}} & {\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{n}}_{g1}^{T} }}} & \ldots & {\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{6}^{T} }}} & {\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{n}}_{g6}^{T} }}} \\ \end{array} } \right],$$
(76)
$$\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{u}}_{g}^{T} }} = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{d}}_{1}^{T} }}} & {\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{n}}_{gk}^{T} }}} & \ldots & {\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{d}}_{6}^{T} }}} & {\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{n}}_{g6}^{T} }}} \\ \end{array} } \right],$$
(77)
$$\frac{{\partial^{2} {\mathbf{t}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }} = \frac{{\partial^{2} {\mathbf{R}}}}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }}\left( {{\mathbf{d}}_{i} + {\mathbf{v}}_{i0} } \right) + \frac{{\partial {\mathbf{R}}}}{{\partial {\mathbf{d}}_{j}^{T} }}\delta_{ik} {\mathbf{I}} + \frac{{\partial {\mathbf{R}}}}{{\partial {\mathbf{d}}_{k}^{T} }}\delta_{ij} {\mathbf{I}} = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} {\mathbf{e}}_{x}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }}} \\ {\frac{{\partial^{2} {\mathbf{e}}_{y}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }}} \\ {\frac{{\partial^{2} {\mathbf{e}}_{z}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }}} \\ \end{array} } \right]\left( {{\mathbf{d}}_{i} + {\mathbf{v}}_{i0} } \right) + \left[ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{e}}_{x}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} }}} \\ {\frac{{\partial {\mathbf{e}}_{y}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} }}} \\ {\frac{{\partial {\mathbf{e}}_{z}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} }}} \\ \end{array} } \right]\delta_{ik} {\mathbf{I}} + \left[ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{e}}_{x}^{T} }}{{\partial {\mathbf{d}}_{k}^{T} }}} \\ {\frac{{\partial {\mathbf{e}}_{y}^{T} }}{{\partial {\mathbf{d}}_{k}^{T} }}} \\ {\frac{{\partial {\mathbf{e}}_{z}^{T} }}{{\partial {\mathbf{d}}_{k}^{T} }}} \\ \end{array} } \right]\delta_{ij} {\mathbf{I}}.$$
(78)

If Node k is away from intersections of non-smooth shells, or if it is on a smooth shell mid-surface,

$$\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }} = \frac{{\partial^{2} {\mathbf{R}}_{h} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }}{\mathbf{p}}_{i} = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} {\mathbf{e}}_{x}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }}} \\ {\frac{{\partial^{2} {\mathbf{e}}_{y}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }}} \\ \end{array} } \right]{\mathbf{p}}_{i},$$
(79)
$$\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{n}}_{gk}^{T} }} = \frac{{\partial {\mathbf{R}}_{h} }}{{\partial {\mathbf{d}}_{j}^{T} }}\delta_{ik} \frac{{\partial {\mathbf{p}}_{i} }}{{\partial {\mathbf{n}}_{gk}^{T} }} = \left[ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{e}}_{x}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} }}} \\ {\frac{{\partial {\mathbf{e}}_{y}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} }}} \\ \end{array} } \right]\delta_{ik} \frac{{\partial {\mathbf{p}}_{i} }}{{\partial {\mathbf{n}}_{gk}^{T} }},$$
(80)
$$\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{n}}_{gk}^{T} }} = {\mathbf{R}}_{h} \delta_{ij} \delta_{ik} \frac{{\partial^{2} {\mathbf{p}}_{i} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{n}}_{gk}^{T} }},$$
(81)
$$\frac{{\partial^{2} {\mathbf{e}}_{x} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }} = - \frac{1}{{\left| {{\mathbf{v}}_{12} } \right|^{3} }}\left[ {\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{j}^{T} }} \otimes {\mathbf{v}}_{12} \frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{k}^{T} }} + \frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{k}^{T} }} \otimes {\mathbf{v}}_{12} \frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{j}^{T} }} + {\mathbf{v}}_{12} \otimes \left( {\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{j}^{T} }}} \right)^{T} \frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{k}^{T} }}} \right] + \frac{{3{\mathbf{v}}_{12} }}{{\left| {{\mathbf{v}}_{12} } \right|^{5} }} \otimes {\mathbf{v}}_{12} \frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{j}^{T} }} \otimes {\mathbf{v}}_{12} \frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{k}^{T} }},$$
(82)
$$\frac{{\partial^{2} {\mathbf{e}}_{z} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }} = \left[ {\frac{{\mathbf{I}}}{{\left| {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right|}} - \frac{{\left( {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right) \otimes \left( {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right)}}{{\left| {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right|^{3} }}} \right]\left( {\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{j}^{T} }} \times \frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{k}^{T} }} + \frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{k}^{T} }} \times \frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{j}^{T} }}} \right) - \left( {\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{j}^{T} }} \times {\mathbf{v}}_{13} + {\mathbf{v}}_{12} \times \frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{j}^{T} }}} \right) \otimes \frac{{\left( {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right)}}{{\left| {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right|^{3} }}\left( {\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{k}^{T} }} \times {\mathbf{v}}_{13} + {\mathbf{v}}_{12} \times \frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{k}^{T} }}} \right) - \frac{{\left( {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right)}}{{\left| {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right|^{3} }} \otimes \left( {\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{j}^{T} }} \times {\mathbf{v}}_{13} + {\mathbf{v}}_{12} \times \frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{j}^{T} }}} \right)^{T} \left( {\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{k}^{T} }} \times {\mathbf{v}}_{13} + {\mathbf{v}}_{12} \times \frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{k}^{T} }}} \right) - \left( {\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{k}^{T} }} \times {\mathbf{v}}_{13} + {\mathbf{v}}_{12} \times \frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{k}^{T} }}} \right) \otimes \frac{{\left( {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right)}}{{\left| {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right|^{3} }}\left( {\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{j}^{T} }} \times {\mathbf{v}}_{13} + {\mathbf{v}}_{12} \times \frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{j}^{T} }}} \right) + \frac{{3\left( {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right) \otimes \left( {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right)}}{{\left| {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right|^{5} }}\left( {\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{j} }} \times {\mathbf{v}}_{13} + {\mathbf{v}}_{12} \times \frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{j} }}} \right) \otimes \left( {{\mathbf{v}}_{12} \times {\mathbf{v}}_{13} } \right)\left( {\frac{{\partial {\mathbf{v}}_{12} }}{{\partial {\mathbf{d}}_{k} }} \times {\mathbf{v}}_{13} + {\mathbf{v}}_{12} \times \frac{{\partial {\mathbf{v}}_{13} }}{{\partial {\mathbf{d}}_{k} }}} \right),$$
(83)
$$\frac{{\partial^{2} {\mathbf{e}}_{y} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }} = \frac{{\partial^{2} {\mathbf{e}}_{z} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }} \times {\mathbf{e}}_{x} + {\mathbf{e}}_{z} \times \frac{{\partial^{2} {\mathbf{e}}_{x} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }} + \frac{{\partial {\mathbf{e}}_{z} }}{{\partial {\mathbf{d}}_{j}^{T} }} \times \frac{{\partial {\mathbf{e}}_{x} }}{{\partial {\mathbf{d}}_{k}^{T} }} + \frac{{\partial {\mathbf{e}}_{z} }}{{\partial {\mathbf{d}}_{k}^{T} }} \times \frac{{\partial {\mathbf{e}}_{x} }}{{\partial {\mathbf{d}}_{j}^{T} }},$$
(84)
$$\frac{{\partial^{2} {\mathbf{p}}_{i} }}{{\partial {\mathbf{n}}_{gi}^{2} }} = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} {\mathbf{p}}_{i} }}{{\partial p_{{i,n_{i} }}^{2} }}} & {\frac{{\partial^{2} {\mathbf{p}}_{i} }}{{\partial p_{{i,n_{i} }} \partial p_{{i,m_{i} }} }}} \\ {\frac{{\partial^{2} {\mathbf{p}}_{i} }}{{\partial p_{{i,m_{i} }} \partial p_{{i,n_{i} }} }}} & {\frac{{\partial^{2} {\mathbf{p}}_{i} }}{{\partial p_{{i,m_{i} }}^{2} }}} \\ \end{array} } \right],$$
(85)
$$\frac{{\partial^{2} {\mathbf{p}}_{i} }}{{\partial p_{{i,n_{i} }}^{2} }} = \left\{ {\begin{array}{*{20}c} {\frac{{\partial^{2} p_{i,X} }}{{\partial p_{{i,n_{i} }}^{2} }}} \\ {\frac{{\partial^{2} p_{i,Y} }}{{\partial p_{{i,n_{i} }}^{2} }}} \\ {\frac{{\partial^{2} p_{i,Z} }}{{\partial p_{{i,n_{i} }}^{2} }}} \\ \end{array} } \right\},\quad \frac{{\partial^{2} {\mathbf{p}}_{i} }}{{\partial p_{{i,m_{i} }}^{2} }} = \left\{ {\begin{array}{*{20}c} {\frac{{\partial^{2} p_{i,X} }}{{\partial p_{{i,m_{i} }}^{2} }}} \\ {\frac{{\partial^{2} p_{i,Y} }}{{\partial p_{{i,m_{i} }}^{2} }}} \\ {\frac{{\partial^{2} p_{i,Z} }}{{\partial p_{{i,m_{i} }}^{2} }}} \\ \end{array} } \right\},\quad \frac{{\partial^{2} {\mathbf{p}}_{i} }}{{\partial p_{{i,n_{i} }} \partial p_{{i,m_{i} }} }} = \left\{ {\begin{array}{*{20}c} {\frac{{\partial^{2} p_{i,X} }}{{\partial p_{{i,n_{i} }} \partial p_{{i,m_{i} }} }}} \\ {\frac{{\partial^{2} p_{i,Y} }}{{\partial p_{{i,n_{i} }} \partial p_{{i,m_{i} }} }}} \\ {\frac{{\partial^{2} p_{i,Z} }}{{\partial p_{{i,n_{i} }} \partial p_{{i,m_{i} }} }}} \\ \end{array} } \right\},$$
(86a, b, c)
$$\frac{{\partial^{2} p_{{i,l_{i} }} }}{{\partial p_{{i,n_{i} }}^{2} }} = - \frac{1}{{p_{{i,l_{i} }} }} - \frac{{p_{{i,n_{i} }}^{2} }}{{p_{{i,l_{i} }}^{3} }},\quad \frac{{\partial^{2} p_{{i,l_{i} }} }}{{\partial p_{{i,m_{i} }}^{2} }} = - \frac{1}{{p_{{i,l_{i} }} }} - \frac{{p_{{i,m_{i} }}^{2} }}{{p_{{i,l_{i} }}^{3} }},\quad \frac{{\partial^{2} p_{{i,l_{i} }} }}{{\partial p_{{i,n_{i} }} \partial p_{{i,m_{i} }} }} = - \frac{{p_{{i,n_{i} }} p_{{i,m_{i} }} }}{{p_{{i,l_{i} }}^{3} }}.$$
(87a, b, c)

where second-order derivatives of the other two components with respect to the vectorial rotational variables are equal to zero.

If Node k is located at an intersection of non-smooth shells,

$$\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }} = \frac{{\partial^{2} {\mathbf{R}}_{h} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }}{\mathbf{R}}_{i}^{T} {\mathbf{R}}_{i0} {\mathbf{p}}_{i0} = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} {\mathbf{e}}_{x}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }}} \\ {\frac{{\partial^{2} {\mathbf{e}}_{y}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{d}}_{k}^{T} }}} \\ \end{array} } \right]{\mathbf{R}}_{i}^{T} {\mathbf{R}}_{i0} {\mathbf{p}}_{i0}.$$
(88)

The second-order derivatives on the right-hand side of Eq. (88) are the same as Eqs. (82)-(84):

$$\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{d}}_{j}^{T} \partial {\mathbf{n}}_{gk}^{T} }} = \frac{{\partial {\mathbf{R}}_{h} }}{{\partial {\mathbf{d}}_{j}^{T} }}\delta_{ik} \frac{{\partial {\mathbf{R}}_{i}^{T} }}{{\partial {\mathbf{n}}_{gk}^{T} }}{\mathbf{R}}_{i0} {\mathbf{p}}_{i0} = \left[ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{e}}_{x}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} }}} \\ {\frac{{\partial {\mathbf{e}}_{y}^{T} }}{{\partial {\mathbf{d}}_{j}^{T} }}} \\ \end{array} } \right]\delta_{ik} \left[ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{e}}_{ix} }}{{\partial {\mathbf{n}}_{gk}^{T} }}} & {\frac{{\partial {\mathbf{e}}_{iy} }}{{\partial {\mathbf{n}}_{gk}^{T} }}} & {\frac{{\partial {\mathbf{e}}_{iz} }}{{\partial {\mathbf{n}}_{gk}^{T} }}} \\ \end{array} } \right]{\mathbf{R}}_{i0} {\mathbf{p}}_{i0},$$
(89)
$$\frac{{\partial^{2} {\varvec{\uptheta}}_{i} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{n}}_{gk}^{T} }} = {\mathbf{R}}_{h} \delta_{ij} \delta_{ik} \frac{{\partial^{2} {\mathbf{R}}_{i}^{T} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{n}}_{gk}^{T} }}{\mathbf{R}}_{i0} {\mathbf{p}}_{i0} = {\mathbf{R}}_{h} \delta_{ij} \delta_{ik} \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} {\mathbf{e}}_{ix} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{n}}_{gk}^{T} }}} & {\frac{{\partial^{2} {\mathbf{e}}_{iy} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{n}}_{gk}^{T} }}} & {\frac{{\partial^{2} {\mathbf{e}}_{iz} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{n}}_{gk}^{T} }}} \\ \end{array} } \right]{\mathbf{R}}_{i0} {\mathbf{p}}_{i0},$$
(90)
$$\frac{{\partial^{2} {\mathbf{e}}_{ix} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{n}}_{gk}^{T} }} = \frac{{\partial^{2} {\mathbf{e}}_{iy} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{n}}_{gk}^{T} }} \times {\mathbf{e}}_{iz} + {\mathbf{e}}_{iy} \times \frac{{\partial^{2} {\mathbf{e}}_{iz} }}{{\partial {\mathbf{n}}_{gj}^{T} \partial {\mathbf{n}}_{gk}^{T} }} + \frac{{\partial {\mathbf{e}}_{iy} }}{{\partial {\mathbf{n}}_{gj}^{T} }} \times \frac{{\partial {\mathbf{e}}_{iz} }}{{\partial {\mathbf{n}}_{gk}^{T} }} + \frac{{\partial {\mathbf{e}}_{iy} }}{{\partial {\mathbf{n}}_{gk}^{T} }} \times \frac{{\partial {\mathbf{e}}_{iz} }}{{\partial {\mathbf{n}}_{gi}^{T} }}.$$
(91)

The first-order derivatives in Eqs. (89) and (91) are calculated as Eqs. (64)–(66), and Eqs. (70)–(74). The second-order derivatives in Eqs. (90) and (91) are calculated as follows:

$$\frac{{\partial^{2} e_{iy,l} }}{{\partial^{2} e_{iy,n} }} = - \frac{{e_{iy,n}^{2} }}{{e_{iy,l}^{3} }} - \frac{1}{{e_{iy,l} }};\quad \frac{{\partial^{2} e_{iy,l} }}{{\partial e_{iy,n} \partial e_{iy,m} }} = - \frac{{e_{iy,n} e_{iy,m} }}{{e_{iy,l}^{3} }};\quad \frac{{\partial^{2} e_{iy,l} }}{{\partial^{2} e_{iy,m} }} = - \frac{{e_{iy,m}^{2} }}{{e_{iy,l}^{3} }} - \frac{1}{{e_{iy,l} }},$$
(92a, b, c)
$$\frac{{\partial^{2} c_{0} }}{{\partial^{2} e_{iy,n} }} = - \frac{{e_{iy,n}^{2} }}{{c_{0}^{3} }} - \frac{1}{{c_{0} }};\quad \frac{{\partial^{2} c_{0} }}{{\partial e_{iy,n} \partial e_{iz,n} }} = - \frac{{e_{iy,n} e_{iz,n} }}{{c_{0}^{3} }};\quad \frac{{\partial^{2} c_{0} }}{{\partial^{2} e_{iz,n} }} = - \frac{{e_{iz,n}^{2} }}{{c_{0}^{3} }} - \frac{1}{{c_{0} }},$$
(92d,e,f)
$$\frac{{\partial^{2} e_{iz,l} }}{{\partial e_{iy,n}^{2} }} = \frac{1}{{1 - e_{iy,n}^{2} }}\left\{ { - \left[ {\frac{{\partial^{2} e_{iy,l} }}{{\partial e_{iy,n}^{2} }}e_{iy,n} + 2\frac{{\partial e_{iy,l} }}{{\partial e_{iy,n} }}} \right]e_{iz,n} - s_{1} s_{3} e_{iy,m} \frac{{\partial^{2} c_{0} }}{{\partial e_{iy,n}^{2} }} + 2e_{iy,n} \frac{{\partial e_{iz,l} }}{{\partial e_{iy,n} }} + 2e_{iz,l} } \right\} + \frac{{2e_{iy,n} }}{{1 - e_{iy,n}^{2} }}\frac{{\partial e_{iz,l} }}{{\partial e_{iy,n} }},$$
(92g)
$$\frac{{\partial^{2} e_{iz,l} }}{{\partial e_{iy,n} \partial e_{iy,m} }} = \frac{ - 1}{{1 - e_{iy,n}^{2} }}\left[ {\left( {\frac{{\partial^{2} e_{iy,l} }}{{\partial e_{iy,n} \partial e_{iy,m} }}e_{iy,n} + \frac{{\partial e_{iy,l} }}{{\partial e_{iy,m} }}} \right)e_{iz,n} + s_{1} s_{3} \frac{{\partial c_{0} }}{{\partial e_{iy,n} }} - 2e_{iy,n} \frac{{\partial e_{iz,l} }}{{\partial e_{iy,m} }}} \right],$$
(92h)
$$\frac{{\partial^{2} e_{iz,l} }}{{\partial e_{iy,n} \partial e_{iz,n} }} = \frac{ - 1}{{1 - e_{iy,n}^{2} }}\left( {e_{iy,n} \frac{{\partial e_{iy,l} }}{{\partial e_{iy,n} }} + e_{iy,l} + s_{1} s_{3} e_{iy,m} \frac{{\partial^{2} c_{0} }}{{\partial e_{iy,n} \partial e_{iz,n} }} + 2e_{iy,n} \frac{{\partial e_{iz,l} }}{{\partial e_{iz,n} }}} \right),$$
(92i)
$$\frac{{\partial^{2} e_{iz,l} }}{{\partial e_{iy,m}^{2} }} = - \frac{{e_{iy,n} e_{iz,n} }}{{1 - e_{iy,n}^{2} }}\frac{{\partial^{2} e_{iy,l} }}{{\partial e_{iy,m}^{2} }},$$
(92j)
$$\frac{{\partial^{2} e_{iz,l} }}{{\partial e_{iy,m} \partial e_{iz,n} }} = \frac{1}{{1 - e_{iy,n}^{2} }}\left( { - \frac{{\partial e_{iy,l} }}{{\partial e_{iy,m} }}e_{iy,n} - s_{1} s_{3} \frac{{\partial c_{0} }}{{\partial e_{iz,n} }}} \right),$$
(92k)
$$\frac{{\partial^{2} e_{iz,l} }}{{\partial e_{iz,n}^{2} }} = \frac{{ - s_{1} s_{3} e_{iy,m} }}{{1 - e_{iy,n}^{2} }}\frac{{\partial^{2} c_{0} }}{{\partial e_{iz,n}^{2} }},$$
(92l)
$$\frac{{\partial^{2} e_{iz,m} }}{{\partial e_{iy,n}^{2} }} = - \left[ {\frac{1}{{e_{iz,m} }}\left( {\frac{{\partial e_{iz,l} }}{{\partial e_{iy,n} }}} \right)^{2} + \frac{{e_{iz,l} }}{{e_{iz,m} }}\frac{{\partial^{2} e_{iz,l} }}{{\partial e_{iy,n}^{2} }}} \right] - \frac{1}{{e_{iz,m} }}\left( {\frac{{\partial e_{iz,m} }}{{\partial e_{iy,n} }}} \right)^{2},$$
(92m)
$$\frac{{\partial^{2} e_{iz,m} }}{{\partial e_{iy,n} \partial e_{iy,m} }} = - \frac{1}{{e_{iz,m} }}\frac{{\partial e_{iz,l} }}{{\partial e_{iy,n} }}\frac{{\partial e_{iz,l} }}{{\partial e_{iy,m} }} - \frac{{e_{iz,l} }}{{e_{iz,m} }}\frac{{\partial^{2} e_{iz,l} }}{{\partial e_{iy,n} \partial e_{iy,m} }} - \frac{1}{{e_{iz,m} }}\frac{{\partial e_{iz,m} }}{{\partial e_{iy,n} }}\frac{{\partial e_{iz,m} }}{{\partial e_{iy,m} }},$$
(92n)
$$\frac{{\partial^{2} e_{iz,m} }}{{\partial e_{iy,n} \partial e_{iz,n} }} = - \frac{1}{{e_{iz,m} }}\frac{{\partial e_{iz,l} }}{{\partial e_{iy,n} }}\frac{{\partial e_{iz,l} }}{{\partial e_{iz,n} }} - \frac{{e_{iz,l} }}{{e_{iz,m} }}\frac{{\partial^{2} e_{iz,l} }}{{\partial e_{iy,n} \partial e_{iz,n} }} - \frac{1}{{e_{iz,m} }}\frac{{\partial e_{iz,m} }}{{\partial e_{iy,n} }}\frac{{\partial e_{iz,m} }}{{\partial e_{iz,n} }},$$
(92o)
$$\frac{{\partial^{2} e_{iz,m} }}{{\partial e_{iy,m}^{2} }} = - \frac{1}{{e_{iz,m} }}\left( {\frac{{\partial e_{iz,l} }}{{\partial e_{iy,m} }}} \right)^{2} - \frac{{e_{iz,l} }}{{e_{iz,m} }}\frac{{\partial^{2} e_{iz,l} }}{{\partial e_{iy,m}^{2} }} - \frac{1}{{e_{iz,m} }}\left( {\frac{{\partial e_{iz,m} }}{{\partial e_{iy,m} }}} \right)^{2},$$
(92p)
$$\frac{{\partial^{2} e_{iz,m} }}{{\partial e_{iy,m} \partial e_{iz,n} }} = - \frac{1}{{e_{iz,m} }}\frac{{\partial e_{iz,l} }}{{\partial e_{iy,m} }}\frac{{\partial e_{iz,l} }}{{\partial e_{iz,n} }} - \frac{{e_{iz,l} }}{{e_{iz,m} }}\frac{{\partial^{2} e_{iz,l} }}{{\partial e_{iy,m} \partial e_{iz,n} }} - \frac{1}{{e_{iz,m} }}\frac{{\partial e_{iz,m} }}{{\partial e_{iy,m} }}\frac{{\partial e_{iz,m} }}{{\partial e_{iz,n} }},$$
(92q)
$$\frac{{\partial^{2} e_{iz,m} }}{{\partial e_{iz,n}^{2} }} = - \frac{1}{{e_{iz,m} }} - \frac{{e_{iz,l} }}{{e_{iz,m} }}\frac{{\partial^{2} e_{iz,l} }}{{\partial e_{iz,n}^{2} }} - \frac{1}{{e_{iz,m} }}\left( {\frac{{\partial e_{iz,l} }}{{\partial e_{iz,n} }}} \right)^{2} - \frac{1}{{e_{iz,m} }}\left( {\frac{{\partial e_{iz,m} }}{{\partial e_{iz,n} }}} \right)^{2}.$$
(92r)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Zx., Wei, H., Vu-Quoc, L. et al. A co-rotational triangular finite element for large deformation analysis of smooth, folded and multi-shells. Acta Mech 232, 1515–1542 (2021). https://doi.org/10.1007/s00707-020-02884-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02884-4

Navigation