Skip to main content
Log in

Instability of critical characteristics of crack propagation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The paper presents the numerically evaluated dependence of the stress intensity factor (SIF) on crack velocity (\(K_{I}-{\dot{a}}\) dependence) in Homalite-100 specimens subjected to pulse loading. Experiments on crack propagation (Ravi-Chandar and Knauss in Int J Fract 25:247–262, 1984. https://doi.org/10.1007/BF00963460; Int J Fract 26:65–80, 1984. https://doi.org/10.1007/BF01152313; Int J Fract 26:141–154, 1984. https://doi.org/10.1007/BF01157550; Int J Fract 26:189–200, 1984. https://doi.org/10.1007/bf01140627) were simulated using the finite element method and incubation time fracture criterion. According to (Ravi-Chandar and Knauss in Int J Fract 26:141–154, 1984. https://doi.org/10.1007/BF01157550), experimental data on the SIF–crack velocity dependence exhibit unstable behavior, i.e. considerable scattering of the SIF values: a broad range of SIF values corresponds to a single crack velocity. This way, the conventional approach based on a \(K_{I}-{\dot{a}}\) dependence being a material property is not applicable in this case. Such a phenomenon is also observed in a numerically obtained \(K_{I}-{\dot{a}}\) dependence, meaning that the developed approach makes it possible to evade the known ambiguity of the \(K_{I}-{\dot{a}}\) relation to predict the crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ravi-Chandar, K., Knauss, W.G.: An experimental investigation into dynamic fracture: I. Crack initiation and arrest. Int. J. Fract. 25, 247–262 (1984). https://doi.org/10.1007/BF00963460

    Article  Google Scholar 

  2. Ravi-Chandar, K., Knauss, W.G.: An experimental investigation into dynamic fracture: II. Microstructural aspects. Int. J. Fract. 26, 65–80 (1984). https://doi.org/10.1007/BF01152313

    Article  Google Scholar 

  3. Ravi-Chandar, K., Knauss, W.G.: An experimental investigation into dynamic fracture: III. On steady state crack propagation and crack brunching. Int. J. Fract. 26, 141–154 (1984). https://doi.org/10.1007/BF01157550

    Article  Google Scholar 

  4. Ravi-Chandar, K., Knauss, W.G.: An experimental investigation into dynamic fracture: IV. On the interaction of stress waves with propagating cracks. Int. J. Fract. 26, 189–200 (1984). https://doi.org/10.1007/bf01140627

    Article  Google Scholar 

  5. Kanninen, M.F., O’Donoghue, P.: Research challenges arising from current and potential applications of dynamic fracture mechanics to the integrity of engineering structures. Int. J. Solids Struct. 32(17/18), 2423–2445 (1995)

    Article  Google Scholar 

  6. Irwin, G.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  7. Shen, W., Yang, F., Zhao, Y.-P.: Unstable crack growth in hydraulic fracturing: The combined effects of pressure and shear stress for a power-law fluid. Eng. Fract. Mech. 225, 106245 (2020)

    Article  Google Scholar 

  8. Zehnder, A.T., Rosakis, A.J.: Dynamic fracture initiation and propagation in 4340 steel under impact loading. Int. J. Fract. 43, 271–285 (1990). https://doi.org/10.1007/BF00035087

    Article  Google Scholar 

  9. Dally, J.W., Fourney, W.L., Irwin, G.R.: On the uniqueness of the stress intensity factor—crack velocity relationship. Int. J. Fract. 27, 159–168 (1985). https://doi.org/10.1007/BF00017965

    Article  Google Scholar 

  10. Petrov, Y.V., Utkin, A.A.: Dependence of the dynamic strength on loading rate. Sov. Mater. Sci. 25(2), 153–156 (1989). https://doi.org/10.1007/BF00780499

    Article  Google Scholar 

  11. Petrov, Y.V.: On “quantum” nature of dynamic fracture of brittle solids. Dokl Akad Nauk USSR 321(1), 66–68 (1991)

    Google Scholar 

  12. Petrov, Y.V.: Quantum analogy in the mechanics of fracture of solids. Phys. Solid State 38(11), 1846–1850 (1996)

    Google Scholar 

  13. Petrov, Y.V., Morozov, N.F.: On the Modeling of Fracture of Brittle Solids. ASME J. Appl. Mech. 61, 710–712 (1994)

    Article  Google Scholar 

  14. Neuber, H.: Kerbspannunglehre: Grundlagen fur Genaue Spannungsrechnung. Springer, Berlin (1937). https://doi.org/10.1007/978-3-662-36565-6

    Book  Google Scholar 

  15. Novozhilov, V.V.: About the necessary and sufficient brittle strength criterion. Prikl. Mat. Mekh. 33(2), 212–222 (1969). https://doi.org/10.1016/0021-8928(69)_90025-2

    Article  Google Scholar 

  16. Petrov, YuV, Sitnikova, E.V.: Dynamic cracking resistance of structural materials predicted from impact fracture of an aircraft alloy. Tech. Phys. 49(1), 57–60 (2004)

    Article  Google Scholar 

  17. Petrov, Y.V., Karihaloo, B.L., Bratov, V.V., Bragov, A.M.: Multi-scale dynamic fracture model for quasi-brittle materials. Int. J. Eng. Sci. 61, 3–9 (2012)

    Article  Google Scholar 

  18. Bragov, A.M., Petrov, YuV, Karihaloo, B.L., Konstantinov, AYu., Lamzin, D.A., Lomunov, A.K., Smirnov, I.V.: Dynamic strength and toughness of an ultra high performance fibre reinforced concrete. Eng. Fract. Mech. 110, 477–488 (2013)

    Article  Google Scholar 

  19. Sun, F., Shen, W., Zhao, Y.-P.: Deflected trajectory of a single fluid-driven crack under anisotropic in-situ stress. Extreme Mech. Lett. 29, 100483 (2019)

    Article  Google Scholar 

  20. Nakamura, T., Shih, C.F., Freund, L.B.: Computational methods based on an energy integral in dynamic fracture. Int. J. Fract. 27, 229–243 (1985)

    Article  Google Scholar 

  21. Shih, C.F., Moran, B., Nakamura, T.: Energy release rate along a three-dimensional crack front in a thermally stressed body. Int. J. Fract. 30, 79–102 (1986)

    Google Scholar 

  22. Smirnov, I., Kazarinov, N., Petrov, Y.: Experimental observation and numerical modelling of unstable behaviour of a fast crack velocity. Theoret. Appl. Fract. Mech. 101, 53–58 (2019). https://doi.org/10.1016/j.tafmec.2019.02.006

    Article  Google Scholar 

  23. Kalthoff, J.F.: On some current problems in Experimental Fracture dynamics, Workshop on dynamic fracture. California Institute of Technology, pp. 11–25 (1983)

Download references

Acknowledgements

Y. Petrov acknowledges support from the Russian Science Foundation (17-11-01053) for research presented in Sects. 1, 4; N. Kazarinov was supported by RFBR (Grants 19-31-60037, 19-51-45016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Petrov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, Y.V., Cherkasov, A.V. & Kazarinov, N.A. Instability of critical characteristics of crack propagation. Acta Mech 232, 1997–2003 (2021). https://doi.org/10.1007/s00707-020-02852-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02852-y

Navigation