Skip to main content
Log in

Mechanism for improving low temperature impact toughness and fatigue durability of high-strength low-alloy steels for applications in the Arctic region

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The effect of a lattice curvature on impact toughness at low temperatures is studied for the 09Mn2Si and 10Mn2VNbAl high-strength low-alloy (HSLA) steels having different compositions of doping elements. It is shown that the formation of the lattice curvature (several degrees/micrometer), in particular by helical rolling, significantly increases the low-temperature impact toughness of the HSLA steels, regardless of the alloying element compositions. This means that the observed effect could be characteristic of other HSLA steels subjected to complex thermo-mechanical treatment with the formation of the lattice curvature of a certain degree. Authors suggest that the perlite \(\rightarrow \) bainite phase transformation develops under helical rolling at a temperature of \(\sim \) \(850\,^\circ \hbox {C}\). As a result, bainite is formed in the lattice curvature zones characterized by the presence of interstitial mesoscopic structural states where random rotational deformation modes could develop. This drastically improves the low temperature impact toughness of the HSLA steels and contributes to enhance their fatigue life and wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gautier, D.L., Bird, K.J., Charpentier, R.R., et al.: Assessment of undiscovered oil and gas in the arctic. Science 324(5931), 1175–1179 (2009). https://doi.org/10.1126/science.1169467

    Article  Google Scholar 

  2. Gorynin, I.V., Khlusova, E.I.: Nanostructured steels for developing the shelf of the Arctic Ocean. Her. Russ. Acad. Sci. 80(6), 507–513 (2010). https://doi.org/10.1134/S1019331610060067

    Article  Google Scholar 

  3. Il’in, A.V., Filin, VYu.: On the ratio of local and energy criteria of unstable cleavage fracture of cold-resistant steel. Inorg. Mater. 50(15), 1543–1548 (2014). https://doi.org/10.1134/S0020168514150047

    Article  Google Scholar 

  4. Yan, J.-B., Liew, J.Y.R., Zhang, M.-H., Wang, J.-Y.: Mechanical properties of normal strength mild steel and high strength steel S690 in low temperature relevant to Arctic environment. Mater. Des. 61, 150–159 (2014). https://doi.org/10.1016/j.matdes.2014.04.057

    Article  Google Scholar 

  5. Zia-Ebrahimi, F.: Ductile-to-brittle transition in steel weldments for arctic structures. Fracture and Deformation Division Center for Materials Science National Bureau of Standards, NBSIR 85-3020 (1985)

  6. Walters, C.L.: The effect of low temperatures on the fatigue of high-strength structural grade steels. Procedia Mater. Sci. 3, 209–214 (2014). https://doi.org/10.1016/j.mspro.2014.06.037

    Article  Google Scholar 

  7. Ghosh, A., Ray, A., Chakrabarti, D., Davis, C.L.: Cleavage initiation in steel: competition between large grains and large particles. Mater. Sci. Eng. A. 561, 126–135 (2013). https://doi.org/10.1016/j.msea.2012.11.019

    Article  Google Scholar 

  8. Filin, V.Y.: Quality control of steels for large-sized welded structures of the Arctic shelf: application of Russian and foreign requirements. Inorg. Mater. Appl. Res. 10, 1492–1503 (2019). https://doi.org/10.1134/S207511331906008X

    Article  Google Scholar 

  9. Russian Maritime Register of Shipping: Rules for the Classification, Construction and Equipment of Mobile Offshore Platforms. Russian Maritime Register of Shipping, Saint-Petersburg (2012)

    Google Scholar 

  10. Layus, P., Kah, P., Ryabov, V., Martikainen, J.: Evaluation of applicability of thick E500 TMCP and F500W QT steel plates for Arctic service. Int. J. Mech. Mater. Eng. 11(4), 1–15 (2016). https://doi.org/10.1186/s40712-016-0057-z

    Article  Google Scholar 

  11. Oryshchenko, A.S.: Creating weldable high-strength structural steel with nanostructuring. Steel Transl. 47(11), 717–721 (2017). https://doi.org/10.3103/S0967091217110080

    Article  Google Scholar 

  12. Gusev, M.A., Dmitriev, A.A.: Bifurcational behaviour of potential energy in a particle system. Phys. Mesomech. 16(4), 287–293 (2013). https://doi.org/10.1134/S1029959913040024

    Article  Google Scholar 

  13. Matsukawa, Y., Steven, J.Z.: One-dimensional fast migration of vacancy clusters in metals. Science 318, 959–962 (2007). https://doi.org/10.1126/science.1148336

    Article  Google Scholar 

  14. Steed, J.W., Atwood, J.L.: Supramolecular Chemistry, 2nd edn. Wiley, Hoboken (2009)

    Book  Google Scholar 

  15. Panin, V.E., Panin, A.V., Perevalova, O.B., Shugurov, A.R.: Mesoscopic structural states at the nanoscale in surface layers of titanium and its alloy Ti–6Al–4V in ultrasonic and electron beam treatment. Phys. Mesomech. 22(5), 345–354 (2019). https://doi.org/10.1134/S1029959919050011

    Article  Google Scholar 

  16. Panin, V.E., Surikova, N.S., Smirnova, A.S., Pochivalov, YuI: Mesoscopic structural states in plastically deformed nanostructured metal materials. Phys. Mesomech. 21(5), 396–400 (2018). https://doi.org/10.1134/S102995991805003X

    Article  Google Scholar 

  17. Panin, V.E., Derevyagina, L.S., Panin, S.V., Shugurov, A.R., Gordienko, A.I.: The role of nanoscale strain-induced defects in the sharp increase of low-temperature impact toughness in low-carbon and low-alloy steels. Mater. Sci. Eng. A 768, 138491 (2019). https://doi.org/10.1016/j.msea.2019.138491

    Article  Google Scholar 

  18. Panin, V.E., Shulepov, I.A., Derevyagina, L.S., Panin, S.V., Gordienko, A.I., Vlasov, I.V.: Nano-scale mesoscopic structural states for the formation of martensitic phases in low alloy steel to obtain high low temperature impact toughness. Phys. Mesomech. 22(6), 5–13 (2019). https://doi.org/10.24411/1683-805X-2019-16001. (in Russian)

    Article  Google Scholar 

  19. Kuznetsov, P.V., Panin, V.E., Galchenko, N.K.: Hardening mechanism of low-carbon and low-alloy steels with a simultaneous increase in ductility and fracture toughness. Phys. Mesomech. 22(5), 19–27 (2019). https://doi.org/10.24411/1683-805X-2019-15003. (in Russian)

    Article  Google Scholar 

  20. Korotovskaya, S.V., Sych, O.V., Khlusova, E.I., Yashina, E.A.: Research of recrystallization processes in low-carbon low-alloy steel in modeling high-temperature rolling. Inorg. Mater. Appl. Res. 10(6), 1301–1308 (2019). https://doi.org/10.1134/S2075113319060121

    Article  Google Scholar 

  21. Kong, X., Lan, L.: Optimization of mechanical properties of low carbon bainitic steel using TMCP and accelerated cooling. Procedia Eng. 81, 114–119 (2014). (11th International Conference on Technology of Plasticity (ICTP 2014). Nagoya Congress Center, Nagoya, Japan (2014))

    Article  Google Scholar 

  22. Sych, O.V., Khlusova, E.I., Yashina, E.A.: Scientific and technological principles of development of new cold-resistant arc-steels (steels for arctic applications). IOP Conf. Ser. Mater. Sci. Eng. 287, 012013 (2017). https://doi.org/10.1088/1757-899X/287/1/012013

    Article  Google Scholar 

  23. Korotovskaya, S.V., Orlov, V.V., Khlusova, E.I.: Control of structure formation during thermomechanical treatment of shipbuilding and pipe steels of unified chemical composition. Metallurgist. 58(5–6), 406–414 (2014). https://doi.org/10.1007/s11015-014-9924-0

    Article  Google Scholar 

  24. Schastlivtsev, V.M., Tabatchikova, T.I., Yakovleva, I.L., Klyueva, SYu., Kruglova, A.A., Khlusova, E.I., Orlov, V.V.: Microstructure and properties of low-carbon weld steel after thermomechanical strengthening. Phys. Met. Metall. 113(5), 480–488 (2012). https://doi.org/10.1134/S0031918X12050067

    Article  Google Scholar 

  25. Egorushkin, V.E.: Dynamics of plastic deformation. localized inelastic strain waves in solids. In: Panin, V.E. (ed.) Physical Mesomechanics of Heterogeneous Media and Computer-Aided Design of Materials Cambridge. International Science Publishing, Cambridge (1998)

    Google Scholar 

  26. Egorushkin, V.E., Panin, V.E., Panin, A.V.: The physical nature of plasticity. Phys. Mesomech. 23(2), 5–14 (2020). https://doi.org/10.24411/1683-805X-2020-12001. (in Russian)

    Article  Google Scholar 

  27. Zehetbauer, M., Valiev, R.Z. (eds.): Nanomaterials by Severe Plastic Deformation. Wiley, Hoboken (2004)

  28. Fang, H.-S., Yang, J.-B., Yang, Z.-G., Bai, B.-Z.: The mechanism of bainite transformation in steels. Scr. Mater. 47, 157–162 (2002). https://doi.org/10.1016/S1359-6462(02)00122-7

    Article  Google Scholar 

  29. Spanos, G., Fang, H.S., Aaronson, H.I.: A mechanism for the formation of lower bainite. Metall. Trans. A. 21A, 1381–1390 (1990). https://doi.org/10.1007/BF02672558

    Article  Google Scholar 

  30. Wang, J.-J., Fang, H.-S., Zheng, Y.-K., Yang, Z.-G.: Use of scanning tunneling microscopy in metallography. Mater. Charact. 33, 169–174 (1994)

    Article  Google Scholar 

  31. Wang, J.-J., Fang, H.-S., Yang, Z.-G., Zheng, Y.-K.: Fine structure and formation mechanism of bainite in steels. ISIJ Int. 35(8), 992–1000 (1995)

    Article  Google Scholar 

  32. Yang, Z.G., Fang, H.S.: An overview on bainite formation in steels. Curr. Opin. Solid State Mater. Sci. 9, 277–286 (2005). https://doi.org/10.1016/j.cossms.2006.06.005

    Article  Google Scholar 

  33. Bhadeshia, H.K.D.H.: Bainite in Steels—Transformation, Microstructure and Properties. IOM Communications Ltd., London (2001)

    Google Scholar 

  34. Panin, V.E., Surikova, N.S., Kuznetsov, P.V., Vlasov, I.V.: Structural turbulence of pearlitic steel 09G2S at low temperature impact toughness. Phys. Mesomech. 23(1), 5–13 (2020). https://doi.org/10.24411/1683-805X-2020-11001. (in Russian)

    Article  Google Scholar 

  35. Chausov, M., Pylypenko, A., Berezin, V., Volyanska, K., Maruschak, P., Hutsaylyuk, V., Markashova, L., Nedoseka, S., Menou, A.: Influence of dynamic non-equilibrium processes on strength and plasticity of materials of transportation systems. Transport 33(1), 231–241 (2018). https://doi.org/10.3846/16484142.2017.1301549

    Article  Google Scholar 

  36. Wang, P., Bian, Y., Yang, F., Fan, H., Zheng, B.: Mechanical properties and energy absorption of FCC lattice structures with different orientation angles. Acta Mech. 231, 3129–3144 (2020). https://doi.org/10.1007/s00707-020-02710-x

    Article  Google Scholar 

  37. Zbib, H.M.: On the mechanics of large inelastic deformations: noncoaxiality, axial effects in torsion and localization. Acta Mech. 87, 179–196 (1991). https://doi.org/10.1007/BF01299794

    Article  MATH  Google Scholar 

  38. Ma, Z., Zhao, H., Ren, L.: Fracture criterion on the basis of uniformity of plastic work of polycrystalline ductile materials under various stress states. Acta Mech. 227, 2053–2059 (2016). https://doi.org/10.1007/s00707-016-1606-5

    Article  Google Scholar 

  39. Xiao, H., Bruhns, O.T., Meyers, A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006). https://doi.org/10.1007/s00707-005-0282-7

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Experimental studies were partly carried out using the large-scale research facilities “Complex of testing and diagnostic equipment for studying properties of structural and functional materials under complex thermomechanical loading” PNRPU. The authors thank I.A. Shulepov for providing the data of Auger spectroscopy.

Funding

This research was performed according to the Government research assignment for ISPMS SB RAS, Project No. III.23.1.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Panin.

Ethics declarations

Conflict of interest

There is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panin, V.E., Egorushkin, V.E. & Panin, S.V. Mechanism for improving low temperature impact toughness and fatigue durability of high-strength low-alloy steels for applications in the Arctic region. Acta Mech 232, 1773–1784 (2021). https://doi.org/10.1007/s00707-020-02828-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02828-y

Navigation