Skip to main content
Log in

A second-order theory for lithium niobate piezoelectric plates with a ferroelectric inversion layer in coupled extensional, thickness-stretch and symmetric thickness-shear motions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A second-order plate theory for a lithium niobate piezoelectric plate with a ferroelectric inversion layer is established. The theory describes coupled extensional, thickness-stretch and symmetric thickness-shear motions of the plate. The two-dimensional theory obtained is validated by comparing the dispersion relations of the relevant waves with the three-dimensional exact theory. For long waves with small wave numbers, the dispersion curves obtained from the plate theory and the three-dimensional theory have the same cutoff frequencies and curvatures. Therefore, the plate theory is useful in the design of devices operating with these waves. A piezoelectric gyroscope based on symmetric thickness-shear modes is analyzed as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nakamura, K., Ando, H., Shimizu, H.: Ferroelectric domain inversion caused in \(\text{ LiNbO}_{\rm 3}\) plates by heat treatment. Appl. Phys. Lett. 50, 1413–1414 (1987)

    Article  Google Scholar 

  2. Nakamura, K., Hosoya, M., Shimizu, H.: Estimation of thickness of ferroelectric inversion layers in \(\text{ LiTaO}_{\rm 3}\) plates by measuring piezoelectric responses. Jpn. J. Appl. Phys. 29, 95–97 (1990)

    Google Scholar 

  3. Nakamura, K., Kato, Y.: Formation of ferroelectric inverted domains and their applications to ultrasonic transducers. Trans. IEICE Jpn. J82–C–I, 728–734 (1999)

    Google Scholar 

  4. Yamamizu, S., Chubachi, N.: Ultrasonic transducer composed of two piezoelectric layers with variable weighting. Jpn. J. Appl. Phys. 24, 68–70 (1985)

    Article  Google Scholar 

  5. Saito, A.S., Kameyama, Y., Nakamura, K.: Ultrasonic focusing Gaussian source to receive nonlinearly generated second harmonic sound by itself. Jpn. J. Appl. Phys. 40, 3664–3667 (2001)

    Article  Google Scholar 

  6. Zhou, Q.F., Cannata, J.M., Guo, H.K., Shung, K.K., Huang, C.Z., Marmarelis, V.Z.: Half-thickness inversion layer high-frequency ultrasonic transducers using \(\text{ LiNbO}_{\rm 3}\) single crystal. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 127–133 (2005)

    Article  Google Scholar 

  7. Zhou, Q.F., Cannata, J.M., Shung, K.K.: Design and modeling of inversion layer ultrasonic transducers using \(\text{ LiNbO}_{\rm 3}\) single crystal. Ultrasonics 44, E607–E611 (2006)

    Article  Google Scholar 

  8. Cherin, E.W., Poulsen, J.K., van der Steen, A.F.W., Lum, P., Foste, F.S.: Experimental characterization of fundamental and second harmonic beams for a high-frequency ultrasound transducer. Ultrasound Med. Biol. 28, 635–646 (2002)

    Article  Google Scholar 

  9. Nakamura, K., Fakazawa, K., Yamada, K., Saito, S.: Broadband ultrasonic transducer using a \(\text{ LiNbO}_{\rm 3}\) plate with a ferroelectric inversion layer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1558–1562 (2003)

    Article  Google Scholar 

  10. Ma, T.F., Wang, J., Du, J.K., Yuan, L.L., Zhang, Z.T., Zhang, C.: Effect of the ferroelectric inversion layer on resonance modes of \(\text{ LiNbO}_{\rm 3}\) thickness-shear mode resonators. Appl. Phys. Express 5, 116501 (2012)

    Article  Google Scholar 

  11. Ma, T.F., Wang, J., Du, J.K., Yang, J.S.: Lateral-field-excited electromechanical resonances in a \(\text{ LiNbO}_{\rm 3}\) crystal plate with a ferroelectric inversion layer. Ferroelectrics 486, 184–192 (2015)

    Article  Google Scholar 

  12. Wang, Z., Zhao, M.H., Yang, J.S.: A piezoelectric gyroscope with self-equilibrated Coriolis force based on overtone thickness-shear modes of a lithium niobate plate with an inversion layer. IEEE Sens. J. 15, 1794–1799 (2015)

    Google Scholar 

  13. Huang, D.J., Yang, J.S.: Flexural motion of a lithium niobate piezoelectric plate with a ferroelectric inversion layer. Mech. Adv. Mater. Struct. (accepted)

  14. Tiersten, H.F., Mindlin, R.D.: Forced vibrations of piezoelectric crystal plates. Quart. Appl. Math. 20, 107–119 (1962)

    Article  Google Scholar 

  15. Mindlin, R.D.: High frequency vibrations of piezoelectric crystal plates. Int. J. Solids Struct. 8, 895–906 (1972)

    Article  Google Scholar 

  16. Bugdayci, N., Bogy, D.B.: A two-dimensional theory for piezoelectric layers used in electro-mechanical transducers. Int. J. Solids Struct. 17, 1159–1178 (1981)

    Article  Google Scholar 

  17. Tiersten, H.F.: On the thickness expansion of the electric potential in the determination of two-dimensional equations for the vibration of electroded piezoelectric plates. J. Appl. Phys. 91, 2277–2283 (2002)

    Article  Google Scholar 

  18. Wang, J., Yang, J.S.: Higher-order theories of piezoelectric plates and applications. Appl. Mech. Rev. 53, 87–99 (2000)

    Article  Google Scholar 

  19. Mindlin, R.D.: An Introduction to the Mathematical Theory of Vibrations of Elastic Plates. In: Yang, J.S. (ed.) World Scientific, Singapore (2006)

  20. Meitzler, A,H., Tiersten, H.F., Warner, A.W., Berlincourt, D., Couqin, G.A., Welsh, III, F.S.: IEEE Standard on Piezoelectricity. IEEE, New York (1988)

  21. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)

    Book  Google Scholar 

  22. Tiersten, H.F.: Equations for the extension and flexure of relatively thin electrostatic plates undergoing larger electric fields. In: Lee, J.S., Maugin, G.A., Shindo, Y. (eds.) Mechanics of Electromagnetic Materials and Structures, AMD Vol. 161, MD Vol. 42, pp. 21–34. ASME, New York (1993)

  23. Yang, J.S.: Equations for the extension and flexure of electroelastic plates under strong electric fields. Int. J. Solids Struct. 36, 3171–3192 (1999)

    Article  Google Scholar 

  24. Mindlin, R.D., Medick, M.A.: Extensional vibrations of elastic plates. ASME J. Appl. Mech. 26, 561–569 (1959)

    MathSciNet  Google Scholar 

  25. Lee, P.C.Y., Edwards, N.P., Lin, W.S.: Second-order theories for extensional vibrations of piezoelectric crystal plates and strips. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1497–1506 (2002)

    Article  Google Scholar 

  26. Huang, R., Lee, P.C.Y., Lin, W.S., Yu, J.-D.: Extensional, thickness-stretch and symmetric thickness-shear vibrations of piezoceramic disks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1507–1511 (2002)

    Article  Google Scholar 

  27. Wu, B., Chen, W.Q., Yang, J.S.: Two-dimensional equations for high-frequency extensional vibrations of piezoelectric ceramic plates with thickness poling. Arch. Appl. Mech. 84, 1917–1935 (2014)

    Article  Google Scholar 

  28. Huang, D.J., Yang, J.S.: On the propagation of long thickness-stretch waves in piezoelectric plates. Ultrasonics 54(5), 1277–1280 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province (Grant No. LY18A020004) and the K. C. Wong Magana Fund through Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dejin Huang or Jiashi Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Material matrices and plate constitutive relations for z-cut \(\hbox {LiNbO}_{{{3}}}\)

Appendix: Material matrices and plate constitutive relations for z-cut \(\hbox {LiNbO}_{{{3}}}\)

The material constants of \(\hbox {LiNbO}_{{3}}\) and \(\hbox {LiTaO}_{{3}}\) can be described by the following matrices [21]:

$$\begin{aligned}&\left( {{\begin{array}{lllllll} {c_{11} } &{}\quad {c_{12} } &{}\quad {c_{13} } &{}\quad {c_{14} } &{}\quad 0 &{}\quad 0 \\ {c_{21} } &{} \quad {c_{11} } &{}\quad {c_{13} } &{}\quad {-c_{14} } &{}\quad 0 &{}\quad 0 \\ {c_{13} } &{}\quad {c_{13} } &{}\quad {c_{33} } &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ {c_{14} } &{}\quad {-c_{14} } &{}\quad \quad 0 &{}\quad {c_{44} } &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad {c_{44} } &{}\quad {c_{14} } \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad {c_{14} } &{}\quad {c_{66} } \\ \end{array} }} \right) ,\\&\left( {{\begin{array}{llllll} 0 &{}\quad 0 &{}\quad 0 &{} 0 &{}\quad {e_{15} } &{}\quad {-e_{22} } \\ {-e_{22} } &{}\quad {e_{22} } &{}\quad 0 &{}\quad {e_{15} } &{}\quad 0 &{}\quad 0 \\ {e_{31} } &{}\quad {e_{31} } &{}\quad {e_{33} } &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ \end{array} }} \right) , \left( {{\begin{array}{lll} {\varepsilon _{11} } &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad {\varepsilon _{11} } &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad {\varepsilon _{33} } \\ \end{array} }} \right) . \end{aligned}$$

For both materials, \(c_{{14}}\) is much smaller than the other elastic constants. Therefore, in the following we make the approximation that \(c_{14} \cong 0\). Then, the plate’s effective material constants in (17) and (22) take the following form:

$$\begin{aligned} {[\bar{{c}}_{pq} ]}= & {} \left[ {{\begin{array}{llllll} {c_{11} -{c_{13}^{2} } / {c_{33} }} &{} {c_{12} -{c_{13}^{2} } / {c_{33} }} &{} 0 &{} 0 &{} 0 &{} 0 \\ {c_{12} -{c_{13}^{2} } / {c_{33} }} &{} {c_{11} -{c_{13}^{2} } / {c_{33} }} &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} {c_{44} } &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} {c_{44} } &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {c_{66} } \\ \end{array} }} \right] ,\\ {[\hat{{c}}_{pq} ]}= & {} \left[ {{\begin{array}{llllll} {c_{11} -\frac{5}{9}\frac{c_{13}^{2} }{c_{33} }} &{} {c_{12} -\frac{5}{9}\frac{c_{13}^{2} }{c_{33} }} &{} {\frac{4}{9}c_{13} } &{} 0 &{} 0 &{} 0 \\ {c_{12} -\frac{5}{9}\frac{c_{13}^{2} }{c_{33} }} &{} {c_{11} -\frac{5}{9}\frac{c_{13}^{2} }{c_{33} }} &{} {\frac{4}{9}c_{13} } &{} 0 &{} 0 &{} 0 \\ {\frac{4}{9}c_{13} } &{} {\frac{4}{9}c_{13} } &{} {\frac{4}{9}c_{33} } &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} {\frac{4}{9}c_{44} } &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} {\frac{4}{9}c_{44} } &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {c_{66} } \\ \end{array} }} \right] ,\\ {[\tilde{{c}}_{pq} ]}= & {} \left[ {{\begin{array}{llllll} {c_{11} -{c_{13}^{2} } / {c_{33} }} &{} {c_{12} -{c_{13}^{2} } / {c_{33} }} &{} 0 &{} 0 &{} 0 &{} 0 \\ {c_{12} -{c_{13}^{2} } / {c_{33} }} &{} {c_{11} -{c_{13}^{2} } / {c_{33} }} &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {c_{66} } \\ \end{array} }} \right] ,\\ {[\bar{{e}}_{iq} ]}= & {} \left[ {{\begin{array}{llllll} 0 &{} 0 &{} 0 &{} 0 &{} {e_{15} } &{} {-e_{22} } \\ {-e_{22} } &{} {e_{22} } &{} 0 &{} {e_{15} } &{} 0 &{} 0 \\ {e_{31} -\frac{c_{13} }{c_{33} }e_{33} } &{} {e_{31} -\frac{c_{13} }{c_{33} }e_{33} } &{} 0 &{} 0 &{} 0 &{} 0 \\ \end{array} }} \right] ,\\ {[\tilde{{e}}_{iq} ]}= & {} \left[ {{\begin{array}{llllll} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {-e_{22} } \\ {-e_{22} } &{} {e_{22} } &{} 0 &{} 0 &{} 0 &{} 0 \\ {e_{31} -\frac{e_{33} c_{13} }{c_{33} }} &{} {e_{31} -\frac{e_{33} c_{13} }{c_{33} }} &{} 0 &{} 0 &{} 0 &{} 0 \\ \end{array} }} \right] ,\\ {[\hat{{e}}_{iq} ]}= & {} \left[ {{\begin{array}{lllllll} 0 &{} 0 &{} 0 &{} 0 &{} {\frac{e_{15} }{6}} &{} {-e_{22} } \\ {-e_{22} } &{} {e_{22} } &{} 0 &{} {\frac{e_{15} }{6}} &{} 0 &{} 0 \\ {e_{31} -\frac{5}{6}\frac{e_{33} c_{13} }{c_{33} }} &{} {e_{31} -\frac{5}{6}\frac{e_{33} c_{13} }{c_{33} }} &{} {\frac{e_{33} }{6}} &{} 0 &{} 0 &{} 0 \\ \end{array} }} \right] , \end{aligned}$$
$$\begin{aligned} {[\bar{{\varepsilon }}_{ij} ]}= & {} \left[ {{\begin{array}{lllllll} {\varepsilon _{11} } &{} 0 &{} 0 \\ 0 &{} {\varepsilon _{11} } &{} 0 \\ 0 &{} 0 &{} {\varepsilon _{33} +\frac{3}{4}\frac{e_{33}^{2} }{c_{33} }} \\ \end{array} }} \right] , \ [\tilde{{\varepsilon }}_{ij} ]=\left[ {{\begin{array}{lllllll} {\varepsilon _{11} } &{} 0 &{} 0 \\ 0 &{} {\varepsilon _{11} } &{} 0 \\ 0 &{} 0 &{} {\varepsilon _{33} +\frac{9}{8}\frac{e_{33}^{2} }{c_{33} }} \\ \end{array} }} \right] ,\\ {[\hat{{\varepsilon }}_{ij} ]}= & {} \left[ {{\begin{array}{lllllll} {\varepsilon _{11} } &{} 0 &{} 0 \\ 0 &{} {\varepsilon _{11} } &{} 0 \\ 0 &{} 0 &{} {\varepsilon _{33} +\frac{15}{16}\frac{e_{33}^{2} }{c_{33} }} \\ \end{array} }} \right] , \ [\breve{{\varepsilon }}_{ij} ]=\left[ {{\begin{array}{lllllll} {\varepsilon _{11} +\frac{15}{16}\frac{e_{15} e_{33} }{c_{44} }} &{} 0 &{} 0 \\ 0 &{} {\varepsilon _{11} +\frac{15}{16}\frac{e_{15}^{2} }{c_{44} }} &{} 0 \\ 0 &{} 0 &{} {\varepsilon _{33} +\frac{15}{16}\frac{e_{15} e_{33} }{c_{33} }} \\ \end{array} }} \right] . \end{aligned}$$

The corresponding plate constitutive relations are

$$\begin{aligned} T_{11}^{(0)}= & {} B_{00} \left( {\hat{{c}}_{11} S_{1}^{(0)} +\hat{{c}}_{12} S_{2}^{(0)} +\hat{{c}}_{13} S_{3}^{(0)} } \right) +B_{20} \left( {\tilde{{c}}_{11} S_{1}^{(2)} +\tilde{{c}}_{12} S_{2}^{(2)} } \right) +\bar{{B}}_{10} \left( {-\hat{{e}}_{21} E_{2}^{(1)} -\hat{{e}}_{31} E_{3}^{(1)} } \right) \\= & {} B_{00} \left( {\hat{{c}}_{11} u_{1,1}^{(0)} +\hat{{c}}_{12} u_{2,2}^{(0)} +\hat{{c}}_{13} u_{3}^{(1)} } \right) +B_{20} \left( {\tilde{{c}}_{11} u_{1,1}^{(2)} +\tilde{{c}}_{12} u_{2,2}^{(2)} } \right) +\bar{{B}}_{10} \left( {\hat{{e}}_{21} \phi _{,2}^{(1)} +\hat{{e}}_{31} 2\phi ^{(2)}} \right) , \\ T_{22}^{(0)}= & {} B_{00} \left( {\hat{{c}}_{21} S_{1}^{(0)} +\hat{{c}}_{22} S_{2}^{(0)} +\hat{{c}}_{23} S_{3}^{(0)} } \right) +B_{20} \left( {\tilde{{c}}_{21} S_{1}^{(2)} +\tilde{{c}}_{22} S_{2}^{(2)} } \right) -\bar{{B}}_{10} \left( {\hat{{e}}_{22} E_{2}^{(1)} +\hat{{e}}_{32} E_{3}^{(1)} } \right) \\= & {} B_{00} \left( {\hat{{c}}_{21} u_{1,1}^{(0)} +\hat{{c}}_{22} u_{2,2}^{(0)} +\hat{{c}}_{23} u_{3}^{(1)} } \right) +B_{20} \left( {\tilde{{c}}_{21} u_{1,1}^{(2)} +\tilde{{c}}_{22} u_{2,2}^{(2)} } \right) +\bar{{B}}_{10} \left( {\hat{{e}}_{22} \phi _{,2}^{(2)} +\hat{{e}}_{32} 2\phi ^{(2)}} \right) , \\ T_{33}^{(0)}= & {} B_{00} \left( {\hat{{c}}_{31} S_{1}^{(0)} +\hat{{c}}_{32} S_{2}^{(0)} +\hat{{c}}_{33} S_{3}^{(0)} } \right) +B_{20} \tilde{{c}}_{36} S_{6}^{(2)} -\bar{{B}}_{10} \hat{{e}}_{33} E_{3}^{(1)} \\= & {} B_{00} \left( {\hat{{c}}_{31} u_{1,1}^{(0)} +\hat{{c}}_{32} u_{2,2}^{(0)} +\hat{{c}}_{33} u_{3}^{(1)} } \right) +B_{20} \tilde{{c}}_{36} \left( {u_{1,2}^{(2)} +u_{2,1}^{(2)} } \right) +\bar{{B}}_{10} \hat{{e}}_{33} 2\phi ^{(2)}, \\ T_{12}^{(0)}= & {} B_{00} \hat{{c}}_{66} S_{6}^{(0)} +B_{20} \tilde{{c}}_{66} S_{6}^{(2)} -\bar{{B}}_{10} \hat{{e}}_{16} E_{1}^{(1)} \\= & {} B_{00} \hat{{c}}_{66} \left( {u_{1,2}^{(0)} +u_{2,1}^{(0)} } \right) +B_{20} \tilde{{c}}_{63} \left( {u_{1,2}^{(2)} +u_{2,1}^{(2)} } \right) +\bar{{B}}_{10} \hat{{e}}_{16} \phi _{,1}^{(1)} , \\ T_{13}^{(1)}= & {} B_{11} \bar{{c}}_{55} S_{5}^{(1)} -\bar{{B}}_{01} \bar{{e}}_{15} E_{1}^{(0)} -\bar{{B}}_{21} \bar{{e}}_{15} E_{1}^{(2)} \\= & {} B_{11} \bar{{c}}_{55} \left( {u_{3,1}^{(1)} +2u_{1}^{(2)} } \right) +\bar{{B}}_{01} \bar{{e}}_{15} \phi _{,1}^{(0)} +\bar{{B}}_{21} \bar{{e}}_{15} \phi _{,1}^{(2)} , \\ T_{23}^{(1)}= & {} B_{11} \bar{{c}}_{44} S_{4}^{(1)} -\bar{{B}}_{01} \bar{{e}}_{24} E_{2}^{(0)} -\bar{{B}}_{21} \bar{{e}}_{24} E_{2}^{(2)} \\= & {} B_{11} \bar{{c}}_{44} \left( {u_{3,2}^{(1)} +2u_{2}^{(2)} } \right) +\bar{{B}}_{01} \bar{{e}}_{24} \phi _{,2}^{(0)} +\bar{{B}}_{21} \bar{{e}}_{24} \phi _{,2}^{(2)} , \\ T_{11}^{(2)}= & {} B_{02} \left( {\tilde{{c}}_{11} S_{1}^{(0)} +\tilde{{c}}_{12} S_{2}^{(0)} } \right) +B_{22} \left( {\tilde{{c}}_{11} S_{1}^{(2)} +\tilde{{c}}_{12} S_{2}^{(2)} } \right) -\bar{{B}}_{12} \left( {\tilde{{e}}_{21} E_{2}^{(1)} +\tilde{{e}}_{31} E_{3}^{(1)} } \right) \\= & {} B_{02} \left( {\tilde{{c}}_{11} u_{1,1}^{(0)} +\tilde{{c}}_{12} u_{2,2}^{(0)} } \right) +B_{22} \left( {\tilde{{c}}_{11} u_{1,1}^{(2)} +\tilde{{c}}_{12} u_{2,2}^{(2)} } \right) +\bar{{B}}_{12} \left( {\tilde{{e}}_{21} \phi _{,2}^{(1)} +\tilde{{e}}_{31} 2\phi ^{(2)}} \right) , \\ T_{22}^{(2)}= & {} B_{02} \left( {\tilde{{c}}_{21} S_{1}^{(0)} +\tilde{{c}}_{22} S_{2}^{(0)} } \right) +B_{22} \left( {\tilde{{c}}_{21} S_{1}^{(2)} +\tilde{{c}}_{22} S_{2}^{(2)} } \right) -\bar{{B}}_{12} \left( {\tilde{{e}}_{22} E_{2}^{(1)} +\tilde{{e}}_{32} E_{3}^{(1)} } \right) \\= & {} B_{02} \left( {\tilde{{c}}_{21} u_{1,1}^{(0)} +\tilde{{c}}_{22} u_{2,2}^{(0)} } \right) +B_{22} \left( {\tilde{{c}}_{21} u_{1,1}^{(2)} +\tilde{{c}}_{22} u_{2,2}^{(2)} } \right) +\bar{{B}}_{12} \left( {\tilde{{e}}_{22} \phi _{,2}^{(1)} +\tilde{{e}}_{32} 2\phi ^{(2)}} \right) , \\ T_{12}^{(2)}= & {} B_{02} \tilde{{c}}_{66} S_{6}^{(0)} +B_{22} \tilde{{c}}_{66} S_{6}^{(2)} -\bar{{B}}_{12} \tilde{{e}}_{16} E_{1}^{(1)} \\= & {} B_{02} \tilde{{c}}_{66} \left( {u_{1,2}^{(0)} +u_{2,1}^{(0)} } \right) +B_{22} \tilde{{c}}_{66} \left( {u_{1,2}^{(2)} +u_{2,1}^{(2)} } \right) +\bar{{B}}_{12} \tilde{{e}}_{16} \phi _{,1}^{(1)} , \\ D_{1}^{(0)}= & {} \bar{{B}}_{10} \left( {\bar{{e}}_{15} S_{5}^{(1)} +\bar{{e}}_{16} S_{6}^{(1)} } \right) +B_{00} \bar{{\varepsilon }}_{11} E_{1}^{(0)} +B_{20} \tilde{{\varepsilon }}_{11} E_{1}^{(2)} \\= & {} \bar{{B}}_{10} \left[ {\bar{{e}}_{15} \left( {u_{3,1}^{(1)} +2u_{1}^{(2)} } \right) +\bar{{e}}_{16} \left( {u_{1,2}^{(1)} +u_{2,1}^{(1)} } \right) } \right] -B_{00} \bar{{\varepsilon }}_{11} \phi _{,1}^{(0)} -B_{20} \tilde{{\varepsilon }}_{11} \phi _{,1}^{(2)} , \\ D_{2}^{(0)}= & {} \bar{{B}}_{10} \left( {\bar{{e}}_{21} S_{1}^{(1)} +\bar{{e}}_{22} S_{2}^{(1)} +\bar{{e}}_{24} S_{4}^{(1)} } \right) +B_{00} \bar{{\varepsilon }}_{22} E_{2}^{(0)} +B_{20} \tilde{{\varepsilon }}_{22} E_{2}^{(2)} \\= & {} \bar{{B}}_{10} \left[ {\bar{{e}}_{21} u_{1,1}^{(1)} +\bar{{e}}_{22} u_{1,1}^{(2)} +\bar{{e}}_{24} \left( {u_{3,2}^{(1)} +2u_{2}^{(2)} } \right) } \right] -B_{00} \bar{{\varepsilon }}_{22} \phi _{,2}^{(0)} -B_{20} \tilde{{\varepsilon }}_{22} \phi _{,2}^{(2)} , \\ D_{3}^{(0)}= & {} \bar{{B}}_{10} \left( {\bar{{e}}_{31} S_{1}^{(1)} +\bar{{e}}_{32} S_{2}^{(1)} } \right) +B_{00} \bar{{\varepsilon }}_{33} E_{3}^{(0)} +B_{20} \tilde{{\varepsilon }}_{33} E_{3}^{(2)} \\= & {} \bar{{B}}_{10} \left( {\bar{{e}}_{31} u_{1,1}^{(1)} +\bar{{e}}_{32} u_{2,2}^{(1)} } \right) -B_{00} \bar{{\varepsilon }}_{33} \phi ^{(1)}, \\ D_{1}^{(1)}= & {} \bar{{B}}_{01} \left( {\hat{{e}}_{15} S_{5}^{(0)} +\hat{{e}}_{16} S_{6}^{(0)} } \right) +\bar{{B}}_{21} \tilde{{e}}_{16} S_{6}^{(2)} +B_{11} \breve{{\varepsilon }}_{11} E_{1}^{(1)} \\= & {} \bar{{B}}_{01} \left[ {\hat{{e}}_{15} \left( {u_{3,1}^{(0)} +u_{1}^{(1)} } \right) +\hat{{e}}_{16} \left( {u_{1,2}^{(0)} +u_{2,1}^{(0)} } \right) } \right] +\bar{{B}}_{21} \tilde{{e}}_{16} \left( {u_{1,2}^{(2)} +u_{2,1}^{(2)} } \right) -B_{11} \breve{{\varepsilon }}_{11} \phi _{,1}^{(1)} , \\ D_{2}^{(1)}= & {} \bar{{B}}_{01} \left( {\hat{{e}}_{21} S_{1}^{(0)} +\hat{{e}}_{22} S_{2}^{(0)} +\hat{{e}}_{24} S_{4}^{(0)} } \right) +\bar{{B}}_{21} \left( {\tilde{{e}}_{21} S_{1}^{(2)} +\tilde{{e}}_{22} S_{2}^{(2)} } \right) +B_{11} \breve{{\varepsilon }}_{22} E_{2}^{(1)} \\= & {} \bar{{B}}_{01} \left[ {\hat{{e}}_{21} u_{1,1}^{(0)} +\hat{{e}}_{22} u_{2,2}^{(0)} +\hat{{e}}_{24} \left( {u_{3,2}^{(0)} +u_{2}^{(1)} } \right) } \right] +\bar{{B}}_{21} \left( {\tilde{{e}}_{21} u_{1,1}^{(2)} +\tilde{{e}}_{22} u_{2,2}^{(2)} } \right) -B_{11} \breve{{\varepsilon }}_{22} \phi _{,2}^{(1)} , \end{aligned}$$
$$\begin{aligned} D_{3}^{(1)}= & {} \bar{{B}}_{01} \left( {\hat{{e}}_{31} S_{1}^{(0)} +\hat{{e}}_{32} S_{2}^{(0)} +\hat{{e}}_{33} S_{3}^{(0)} } \right) +\bar{{B}}_{21} \left( {\tilde{{e}}_{31} S_{1}^{(2)} +\tilde{{e}}_{32} S_{2}^{(2)} } \right) +B_{11} \breve{{\varepsilon }}_{33} E_{3}^{(1)} \\= & {} \bar{{B}}_{01} \left( {\hat{{e}}_{31} u_{1,1}^{(0)} +\hat{{e}}_{32} u_{2,2}^{(0)} +\hat{{e}}_{33} u_{3}^{(1)} } \right) +\bar{{B}}_{21} \left( {\tilde{{e}}_{31} u_{1,1}^{(2)} +\tilde{{e}}_{32} u_{2,2}^{(2)} } \right) -B_{11} \breve{{\varepsilon }}_{33} 2\phi ^{(2)}, \\ D_{1}^{(2)}= & {} \bar{{B}}_{12} \left( {\bar{{e}}_{15} S_{5}^{(1)} +\bar{{e}}_{16} S_{6}^{(1)} } \right) +B_{02} \tilde{{\varepsilon }}_{11} E_{1}^{(0)} +B_{22} \hat{{\varepsilon }}_{11} E_{1}^{(2)} \\= & {} \bar{{B}}_{12} \left[ {\bar{{e}}_{15} \left( {u_{3,1}^{(1)} +2u_{1}^{(2)} } \right) +\bar{{e}}_{16} \left( {u_{1,2}^{(1)} +u_{2,1}^{(1)} } \right) } \right] -B_{02} \tilde{{\varepsilon }}_{11} \phi _{,1}^{(0)} -B_{22} \hat{{\varepsilon }}_{11} \phi _{,1}^{(2)} , \\ D_{2}^{(2)}= & {} \bar{{B}}_{12} \left( {\bar{{e}}_{21} S_{1}^{(1)} +\bar{{e}}_{22} S_{2}^{(1)} +\bar{{e}}_{24} S_{4}^{(1)} } \right) +B_{02} \tilde{{\varepsilon }}_{22} E_{2}^{(0)} +B_{22} \hat{{\varepsilon }}_{22} E_{2}^{(2)} \\= & {} \bar{{B}}_{12} \left[ {\bar{{e}}_{21} u_{1,1}^{(1)} +\bar{{e}}_{22} u_{2,2}^{(1)} +\bar{{e}}_{24} \left( {u_{3,2}^{(1)} +2u_{2}^{(2)} } \right) } \right] -B_{02} \tilde{{\varepsilon }}_{22} \phi _{,2}^{(0)} -B_{22} \hat{{\varepsilon }}_{22} \phi _{,2}^{(2)} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Yang, J. A second-order theory for lithium niobate piezoelectric plates with a ferroelectric inversion layer in coupled extensional, thickness-stretch and symmetric thickness-shear motions. Acta Mech 231, 5239–5250 (2020). https://doi.org/10.1007/s00707-020-02794-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02794-5

Navigation