Skip to main content
Log in

Viewing the Solar System via a variable-coefficient nonlinear dispersive-wave system

  • Note
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Oceans crossing the Solar System attract people’s attention: the Earth, Enceladus, and Titan. On a variable-coefficient nonlinear dispersive-wave system for the shallow oceanic environment, our symbolic computation yields two non-auto-Bäcklund transformations and auto-Bäcklund transformations with some solitons, with regard to the wave elevation and surface velocity of the water wave, which depend on the variable coefficients. This paper could be of some use for the future oceanic studies in the Solar System.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. 1.Examples are the investigations on the interaction of linear modulated waves and unsteady dispersive hydrodynamic states with the applications to the shallow water waves [17], water-wave scattering by multiple thin vertical barriers [16], water-wave scattering by three thin vertical barriers [18], internal tides over a shallow ridge with a high-resolution downscaling regional ocean model [19], shallow overturning circulation in the Indian Ocean [20] and propagation of long-crested water waves [21].

  2. Two branches appear because of the choices based on the “±” signs.

References

  1. Kafle, J., Kattel, P., Mergili, M., et al.: Dynamic response of submarine obstacles to two-phase landslide and tsunami impact on reservoirs. Acta Mech. 230, 3143–3169 (2019)

    MathSciNet  Google Scholar 

  2. Hu, S.H., Tian, B., Du, X.X., Liu, L., Zhang, C.R.: Lie symmetries, conservation laws and solitons for the AB system with time-dependent coefficients in nonlinear optics or fluid mechanics. Pramana J. Phys. 93, 0038 (2019)

    Google Scholar 

  3. Yuan, Y.Q., Tian, B., Qu, Q.X., Zhao, X.H., Du, X.X.: Periodic-wave and semirational solutions for the (2+1)-dimensional Davey–Stewartson equations on the surface water waves of finite depth. Z. Angew. Math. Phys. 71, 46 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Jia, T.T., Gao, Y.T., Feng, Y.J., Hu, L., Su, J.J., Li, L.Q., Ding, C.C.: On the quintic time-dependent-coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics. Nonlinear Dyn. 96, 229–241 (2019)

    MATH  Google Scholar 

  5. Wachs, A.: Particle-scale computational approaches to model dry and saturated granular flows of non-Brownian, non-cohesive, and non-spherical rigid bodies. Acta Mech. 230, 1919–1980 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Hu, C.C., Tian, B., Yin, H.M., Zhang, C.R., Zhang, Z.: Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in a fluid. Comput. Math. Appl. 78, 166–177 (2019)

    MathSciNet  Google Scholar 

  7. Jia, T.T., Gao, Y.T., Deng, G.F., Hu, L.: Quintic time-dependent-coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics: bilinear forms and dark/anti-dark/gray solitons. Nonlinear Dyn. 98, 269–282 (2019)

    MATH  Google Scholar 

  8. Ding, C.C., Gao, Y.T., Deng, G.F.: Breather and hybrid solutions for a generalized (3+1)-dimensional B-type Kadomtsev–Petviashvili equation for the water waves. Nonlinear Dyn. 97, 2023–2040 (2019)

    MATH  Google Scholar 

  9. Chen, Y.Q., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Tian, H.Y., Wang, M.: Reduction and analytic solutions of a variable-coefficient Korteweg–de Vries equation in a fluid, crystal or plasma. Mod. Phys. Lett. B (2020). https://doi.org/10.1142/S0217984920502875. (in press)

    Article  Google Scholar 

  10. Chen, Y.Q., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Tian, H.Y., Wang, M.: Ablowitz–Kaup–Newell–Segur system, conservation laws and Backlund transformation of a variable–coefficient Korteweg–de Vries equation in plasma physics, fluid dynamics or atmospheric science. Int. J. Mod. Phys. B (2020). No.: JPB20076387R1. (in press)

  11. Borejko, P., Chen, C., Pao, Y.: Generalized ray method for three-dimensional propagation in a penetrable wedge. Acta Mech. 229, 993–1016 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Hu, C.C., Tian, B., Wu, X.Y., Yuan, Y.Q., Du, Z.: Mixed lump-kink and rogue wave-kink solutions for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid mechanics. Eur. Phys. J. Plus 133, 40 (2018)

    Google Scholar 

  13. Hu, L., Gao, Y.T., Jia, S.L., Su, J.J., Deng, G.F.: Solitons for the (2+1)-dimensional Boiti–Leon–Manna–Pempinelli equation for an irrotational incompressible fluid via the Pfaffian technique. Mod. Phys. Lett. B 33, 1950376 (2019)

    MathSciNet  Google Scholar 

  14. Deng, G.F., Gao, Y.T., Su, J.J., Ding, C.C., Jia, T.T.: Solitons and periodic waves for the (2+1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics. Nonlinear Dyn. 99, 1039–1052 (2020)

    Google Scholar 

  15. Feng, Y.J., Gao, Y.T., Li, L.Q., Jia, T.T.: Bilinear form and solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow-water waves. Appl. Anal. (2020). https://doi.org/10.1080/00036811.2019.1652734. (in press)

    Article  Google Scholar 

  16. Roy, R., De, S., Mandal, B.N.: Water wave scattering by multiple thin vertical barriers. Appl. Math. Comput. 355, 458–481 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Congy, T., El, G.A., Hoefer, M.A.: Interaction of linear modulated waves and unsteady dispersive hydrodynamic states with application to shallow water waves. J. Fluid Mech. 875, 1145–1174 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Roy, R., De, S., Mandal, B.N.: Water wave scattering by three thin vertical barriers arranged asymmetrically in deep water. Fluid Dyn. Res. 51, 045508 (2019)

    MathSciNet  Google Scholar 

  19. Masunaga, E., Uchiyama, Y., Suzue, Y., Yamazaki, H.: Dynamics of internal tides over a shallow ridge investigated with a high-resolution downscaling regional ocean model. Geophys. Res. Lett. 45, 3550–3558 (2018)

    Google Scholar 

  20. Nagura, M., McPhaden, M.J.: The shallow overturning circulation in the Indian Ocean. J. Phys. Oceanogr. 48, 413–434 (2018)

    Google Scholar 

  21. Bona, J.L., Colin, T., Guillope, C.: Propagation of long-crested water waves. II. Bore propagation. Discrete Contin. Dyn. Sys. 39, 5543–5569 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Wang, L., Gao, Y.T., Meng, D.X., Gai, X.L., Xu, P.B.: Soliton-shape-preserving and soliton-complex interactions for a (1+1)-dimensional nonlinear dispersive-wave system in shallow water. Nonlinear Dyn. 66, 161–168 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Staniland, N.R., Dougherty, M.K., Masters, A., et al.: Determining the nominal thickness and variability of the magnetodisc current sheet at Saturn. J. Geophys. Res.-Space 125, e2020JA027794 (2020)

  24. Glein, C.R., Waite, J. H.: The carbonate geochemistry of Enceladus’ ocean. Geophys. Res. Lett. 47, e2019GL085885 (2020)

  25. Rekier, J., Trinh, A., Triana, S.A., et al.: Internal energy dissipation in Enceladus’s subsurface ocean from tides and libration and the role of inertial waves. J. Geophys. Res.-Planet. 124, 2198–2212 (2019)

    Google Scholar 

  26. Vu, T.H., Choukroun, M., Sotin, C., et al.: Rapid formation of Clathrate Hydrate from liquid Ethane and Water ice on Titan. Geophys. Res. Lett. 47, e2019GL086265 (2020)

  27. Leitner, M.A., Lunine, J.I.: Modeling early Titan’s ocean composition. ICARUS 333, 61–70 (2019)

    Google Scholar 

  28. Mastrogiuseppe, M.: Dual frequency orbiter-radar system for the observation of seas and tides on Titan: extraterrestrial oceanography from satellite. Remote Sens.-Basel 11, 1898 (2019)

  29. Gao, X.Y., Guo, Y.J., Shan, W.R.: Water-wave symbolic computation for the Earth, Enceladus and Titan: higher-order Boussinesq–Burgers system, auto- and non-auto-Backlund transformations. Appl. Math. Lett. 104, 106170 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Kaup, D.J.: A higher-order water wave equation and the method for solving it. Prog. Theor. Phys. 54, 396–408 (1975)

    MathSciNet  MATH  Google Scholar 

  31. Kupershmidt, B.A.: Mathematics of dispersive water waves. Commun. Math. Phys. 99, 51–73 (1985)

    MathSciNet  MATH  Google Scholar 

  32. Li, Y.S.: Some water wave equations and integrability. J. Nonlinear Math. Phys. 12, 466–481 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Ji, X.D., Chen, C.L., Zhang, J.E., Li, Y.S.: Lie symmetry analysis of Wu–Zhang equation. J. Math. Phys. 45, 448–460 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Zhang, J.E., Li, Y.S.: Bidirectional solitons on water. Phys. Rev. E 67, 016306 (2003)

    MathSciNet  Google Scholar 

  35. Li, Y.S., Zhang, J.E.: Bidirectional soliton solutions of the classical Boussinesq system and AKNS system. Chaos Solitons Fractals 16, 271–277 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Li, Y.S., Ma, W.X., Zhang, J.E.: Darboux transformation of classical Boussinesq system and its new solutions. Phys. Lett. A 275, 60–66 (2000)

    MathSciNet  MATH  Google Scholar 

  37. Li, Y.S., Zhang, J.E.: Darboux transformation of classical Boussinesq system and its multi-soliton solutions. Phys. Lett. A 284, 253–258 (2001)

    MathSciNet  MATH  Google Scholar 

  38. Zhang, Y., Chang, H., Li, N.: Explicit N-fold Darboux transformation for the classical Boussinesq system and multi-soliton solutions. Phys. Lett. A 373, 454–457 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Liu, P.: Darboux transformation of Broer-Kaup system and its soliton solutions. Acta Sci. Math. A 26, 999–1007 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Lin, J., Ren, B., Li, H.M., Li, Y.S.: Soliton solutions for two nonlinear partial differential equations using a Darboux transformation of the Lax pairs. Phys. Rev. E 77, 036605 (2008)

    MathSciNet  Google Scholar 

  41. Du, Z., Tian, B., Qu, Q.X., Wu, X.Y., Zhao, X.H.: Vector rational and semi-rational rogue waves for the coupled cubic-quintic nonlinear Schrödinger system in a non-Kerr medium. Appl. Numer. Math. 153, 179–187 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Hu, S.H., Tian, B., Du, X.X., Du, Z., Wu, X.Y.: Lie symmetry reductions and analytic solutions for the AB system in a nonlinear optical fiber. J. Comput. Nonlinear Dyn. 14, 111001 (2019)

    Google Scholar 

  43. Su, J.J., Gao, Y.T., Deng, G.F., Jia, T.T.: Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow. Phys. Rev. E 100, 042210 (2019)

    MathSciNet  Google Scholar 

  44. Zhao, X., Tian, B., Qu, Q.X., Yuan, Y.Q., Du, X.X., Chu, M.X.: Dark-dark solitons for the coupled spatially modulated Gross–Pitaevskii system in the Bose–Einstein condensation. Mod. Phys. Lett. B 4, 5 (2020). https://doi.org/10.1142/S0217984920502826. (in press)

    Article  Google Scholar 

  45. Du, X.X., Tian, B., Qu, Q.X., Yuan, Y.Q., Zhao, X.H.: Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov–Kuznetsov equation in an electron–positron–ion magnetoplasma. Chaos Solitons Fractals 134, 109709 (2020)

    MathSciNet  Google Scholar 

  46. Wang, M., Tian, B., Sun, Y., Zhang, Z.: Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles. Comput. Math. Appl. 79, 576 (2020)

    MathSciNet  Google Scholar 

  47. Su, J.J., Gao, Y.T., Ding, C.C.: Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows. Appl. Math. Lett. 88, 201–208 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, C.R., Tian, B., Sun, Y., Yin, H.M.: Binary Darboux transformation and vector-soliton-pair interactions with the negatively coherent coupling in a weakly birefringent fiber. EPL 127, 40003 (2019)

    Google Scholar 

  49. Wang, M., Tian, B., Qu, Q.X., Du, X.X., Zhang, C.R., Zhang, Z.: Lump, lumpoff and rogue waves for a (2+1)-dimensional reduced Yu–Toda–Sasa–Fukuyama equation in a lattice or liquid. Eur. Phys. J. Plus 134, 578 (2019)

    Google Scholar 

  50. Ding, C.C., Gao, Y.T., Li, L.Q.: Breathers and rogue waves on the periodic background for the Gerdjikov–Ivanov equation for the Alfven waves in an astrophysical plasma. Chaos Solitons Fractals 120, 259–265 (2019)

    MathSciNet  Google Scholar 

  51. Yin, H.M., Tian, B., Zhao, X.C.: Chaotic breathers and breather fission/fusion for a vector nonlinear Schrödinger equation in a birefringent optical fiber or wavelength division multiplexed system. Appl. Math. Comput. 368, 124768 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Deng, G.F., Gao, Y.T., Su, J.J., Ding, C.C.: Multi-breather wave solutions for a generalized (3+1)-dimensional Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid. Appl. Math. Lett. 98, 177–183 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Lambert, F., Springael, J.: On a direct procedure for the disclosure of Lax pairs and Bäcklund transformations. Chaos Solitons Fractals 12, 2821–2832 (2001)

    MathSciNet  MATH  Google Scholar 

  54. Lambert, F., Springael, J.: Soliton equations and simple combinatorics. Acta Appl. Math. 102, 147 (2008)

    MathSciNet  MATH  Google Scholar 

  55. Yin, H.M., Tian, B., Zhao, X.C.: Magnetic breathers and chaotic wave fields for a higher-order (2+1)-dimensional nonlinear Schrödinger-type equation in a Heisenberg ferromagnetic spin chain. J. Magn. Magn. Mater. 495, 165871 (2020)

    Google Scholar 

  56. Feng, Y.J., Gao, Y.T., Jia, T.T., Li, L.Q.: Soliton interactions of a variable-coefficient three-component AB system for the geophysical flows. Mod. Phys. Lett. B 33, 1950354 (2019)

    MathSciNet  Google Scholar 

  57. Yuan, Y.Q., Tian, B., Qu, Q.X., Zhang, C.R., Du, X.X.: Lax pair, binary Darboux transformation and dark solitons for the three-component Gross–Pitaevskii system in the spinor Bose–Einstein condensate. Nonlinear Dyn. 99, 3001–3011 (2020)

    Google Scholar 

  58. Du, X.X., Tian, B., Yuan, Y.Q., Du, Z.: Symmetry reductions, group-invariant solutions, and conservation laws of a (2+1)-dimensional nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain. Ann. Phys. (Berlin) 531, 1900198 (2019)

    Google Scholar 

  59. Zhang, C.R., Tian, B., Qu, Q.X., Liu, L., Tian, H.Y.: Vector bright solitons and their interactions of the couple Fokas–Lenells system in a birefringent optical fiber. Z. Angew. Math. Phys. 71, 18 (2020)

    MathSciNet  MATH  Google Scholar 

  60. Chen, S.S., Tian, B., Sun, Y., Zhang, C.R.: Generalized Darboux transformations, rogue waves, and modulation instability for the coherently coupled nonlinear Schrödinger equations in nonlinear optics. Ann. Phys. (Berlin) 531, 1900011 (2019)

    Google Scholar 

  61. Chen, S.S., Tian, B., Liu, L., Yuan, Y.Q., Zhang, C.R.: Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrödinger system. Chaos Solitons Fractals 118, 337–346 (2019)

    MathSciNet  Google Scholar 

  62. Du, Z., Tian, B., Chai, H.P., Zhao, X.H.: Dark-bright semi-rational solitons and breathers for a higher-order coupled nonlinear Schrödinger system in an optical fiber. Appl. Math. Lett. 102, 106110 (2020)

    MathSciNet  MATH  Google Scholar 

  63. “Burgers’ equation”: https://encyclopedia.thefreedictionary.com/Burgers%27+equation (2020)

  64. Gao, X.Y.: Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl. Math. Lett. 91, 165–172 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the Fundamental Research Funds for the Central Universities of China under Grant No. 2019XD-A11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Yi Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XY., Guo, YJ. & Shan, WR. Viewing the Solar System via a variable-coefficient nonlinear dispersive-wave system. Acta Mech 231, 4415–4420 (2020). https://doi.org/10.1007/s00707-020-02747-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02747-y

Navigation