Skip to main content
Log in

A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new model for anisotropic magneto-electro-elastic Mindlin plates is developed by using an extended modified couple stress theory. The equations of motion and complete boundary conditions are simultaneously obtained by a variational formulation based on Hamilton’s principle. The new anisotropic magneto-electro-elastic plate model includes the models for orthotropic and transversely isotropic magneto-electro-elastic Mindlin plates and the model for isotropic Mindlin plates, all incorporating the microstructure effect, as special cases. To illustrate the new model, the static bending and free vibration problems of a simply supported transversely isotropic magneto-electro-elastic plate are analytically solved by directly applying the general formulas derived. For the static bending problem, the numerical results reveal that the deflection, rotation, electric potential, and magnetic potential of the simply supported plate predicted by the current non-classical model are always smaller than those predicted by the classical elasticity-based model, and the differences are significant when the plate thickness is very small but is diminishing as the thickness increases. For the free vibration problem, it is found that the natural frequency predicted by the new plate model is higher than that predicted by the classical model, and the difference is quite large for very thin plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ab :

Length and width of the plate

\({b_{h}}\) :

Higher-order bending parameter

\({c_{i}}\) :

Components of the body couple resultant

\({d_{ij}}\) :

Magneto-dielectric coefficients

\({e_{ikl}}, {e_{i\alpha } }\) :

Piezoelectric coefficients

\({f_{i}}\) :

Components of the body force resultant

h :

Thickness of the plate

\({k_\mathrm{s}}\) :

Shape correction factor

l :

Material length scale parameter

\(m_{0}\), \(m_{{2}}\) :

Mass inertia

\({m_{ij}} ,{m_{\alpha } }\) :

Couple stress tensor

\({n_{x}} , {n_{y}}\) :

Direction cosines of the unit normal to the boundary

\({p_0}\) :

Uniformly distributed normal load

\({q_{ikl}}, {q_{i\alpha } }\) :

Piezomagnetic coefficients

\({s_{i}}\) :

Components of the surface couple resultant

\({t_{i}}\) :

Components of the Cauchy traction resultant

\({u_{i}}\) :

Displacement components

uvw :

Displacement components at a point on the middle plane

\({A_{ijkl}} , {A_{\alpha \beta }} , {B_{ijkl}} , {B_{\alpha \beta }}, {C_{ijkl}} , {C_{\alpha \beta } }\) :

Elastic stiffness coefficients

\({B_{i}}\) :

Magnetic flux

\({D_{i}}\) :

Electric displacement

\({E_{i}}\) :

Electric field intensity

\({H_{i}}\) :

Magnetic field intensity

K :

Kinetic energy

M :

Magnetic potential

\(M_{x}, M_{y}\) :

Moments per unit length about the y- and x-axes on \(\partial R\)

\({N_{ij}}, {M_{ij}} , {Y_{ij}}, {H_{ij}}\) :

Stress and couple-stress resultants

\({U_{T}}\) :

Total potential energy

W :

Work done by external forces

\({\sigma _{ij}, \sigma _{\alpha }}\) :

Stress tensor components

\({{\varepsilon }_{\textit{ij}}, \varepsilon _{\beta } }\) :

Strain tensor components

\({{\chi }_{\textit{ij}}} ,{\chi _{\beta } }\) :

Curvature tensor components

\({\theta _{i}}\) :

Rotation vector components

\({\omega _{f}}\) :

Resonant frequency

\({\epsilon _{ij}}\) :

Dielectric tensor components

\({\mu _{ij}}\) :

Magnetic permeability tensor components

\({\phi _{x}} ,{\phi _y}\) :

Rotation angles of a transverse normal

\({\lambda , \mu }\) :

Lamé constants in classical elasticity

\({\gamma }\) :

Spatial variation in the mid-plane electric potential

\({\zeta }\) :

Spatial variation in the mid-plane magnetic potential

\({\rho }\) :

Mass density of the plate material

\({\nu }\) :

Poisson’s ratio

\({{\Xi }}_{i} , \Sigma _{i}\) :

Electric and magnetic resultants through the plate thickness

\({\varPhi }\) :

Electric potential

\({\varPsi _\mathrm{B}}\) :

Energy density function

\(\Omega \) :

Region occupied by the plate

References

  1. Berlincourt, D.A., Curran, D.R., Jaffe, H.: Piezoelectric and piezomagnetic materials and their function in transducers. Phys. Acoust. 1, 169–270 (1964)

    Google Scholar 

  2. Bower, A.F.: Applied Mechanics of Solids. CRC Press, Boca Raton (2009)

    Google Scholar 

  3. Chen, W., Li, X.: A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model. Arch. Appl. Mech. 84, 323–341 (2014)

    MATH  Google Scholar 

  4. Chen, W.Q., Lee, K.Y.: Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates. Int. J. Solids Struct. 40, 5689–5705 (2003)

    MATH  Google Scholar 

  5. Ebrahimi, F., Dabbagh, A.: Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates. Mater. Res. Express 4, 025003-1–025003-19 (2017)

    Google Scholar 

  6. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Google Scholar 

  7. Fan, T., Zou, G., Yang, L.: Nano piezoelectric/piezomagnetic energy harvester with surface effect based on thickness shear mode. Compos. Part B Eng. 74, 166–170 (2015)

    Google Scholar 

  8. Farajpour, A., Yazdi, M.H., Rastgoo, A., Loghmani, M., Mohammadi, M.: Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates. Compos. Struct. 140, 323–336 (2016)

    Google Scholar 

  9. Gao, X.-L., Huang, J.X., Reddy, J.N.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224, 2699–2718 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Gao, X.-L., Mall, S.: Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. 38, 855–874 (2001)

    MATH  Google Scholar 

  11. Gao, X.-L., Zhang, G.Y.: A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects. Contin. Mech. Thermodyn. 28, 195–213 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Gao, X.-L., Zhang, G.Y.: A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects. Proc. R. Soc. A 472, 20160275-1–20160275-25 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Guo, J., Chen, J., Pan, E.: Static deformation of anisotropic layered magnetoelectroelastic plates based on modified couple-stress theory. Compos. Part B Eng. 107, 84–96 (2016)

    Google Scholar 

  14. Guo, J., Chen, J., Pan, E.: Size-dependent behavior of functionally graded anisotropic composite plates. Int. J. Eng. Sci. 106, 110–124 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal 57, 291–323 (1975)

    MathSciNet  MATH  Google Scholar 

  16. Jomehzadeh, E., Noori, H.R., Saidi, A.R.: The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Physica E 43, 877–883 (2011)

    Google Scholar 

  17. Lakes, R.S., Benedict, R.L.: Noncentrosymmetry in micropolar elasticity. Int. J. Eng. Sci. 20, 1161–1167 (1982)

    MATH  Google Scholar 

  18. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids. 51, 1477–1508 (2003)

    MATH  Google Scholar 

  19. Lazar, M., Kirchner, H.O.K.: Cosserat (micropolar) elasticity in Stroh form. Int. J. Solids Struct. 42, 5377–5398 (2005)

    MATH  Google Scholar 

  20. Li, J.Y.: Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials. Int. J. Eng. Sci. 38, 1993–2011 (2000)

    Google Scholar 

  21. Li, N., Qian, Z., Yang, J.: Two-dimensional equations for piezoelectric thin-film acoustic wave resonators. Int. J. Solids Struct. 110, 170–177 (2017)

    Google Scholar 

  22. Li, Y.S., Pan, E.: Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. Int. J. Eng. Sci. 97, 40–59 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Li, Y.S., Cai, Z.Y., Shi, S.Y.: Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory. Compos. Struct. 111, 522–529 (2014)

    Google Scholar 

  24. Lim, C.W., He, L.H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46, 1715–1726 (2004)

    MATH  Google Scholar 

  25. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids. 78, 298–313 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Ma, H.M., Gao, X.-L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Ma, H.M., Gao, X.-L., Reddy, J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    MATH  Google Scholar 

  28. Martin, L.W., Crane, S.P., Chu, Y.H., Holcomb, M.B., Gajek, M., Huijben, M., Yang, C.H., Balke, N., Ramesh, R.: Multiferroics and magnetoelectrics: thin films and nanostructures. J. Phys. Condens. Mater. 20, 434220-1–434220-13 (2008)

    Google Scholar 

  29. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Google Scholar 

  30. Mindlin, R.D.: Thickness-shear and flexural vibrations of crystal plates. J. Appl. Phys. 22, 316–323 (1951)

    MathSciNet  MATH  Google Scholar 

  31. Mindlin, R.D.: High frequency vibrations of piezoelectric crystal plates. Int. J. Solids Struct. 8, 895–906 (1972)

    MATH  Google Scholar 

  32. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Google Scholar 

  33. Nan, C.W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)

    Google Scholar 

  34. Pan, E.: Exact solution for simply supported and multilayered magneto-electro-elastic plates. ASME J. Appl. Mech. 68, 608–618 (2001)

    MATH  Google Scholar 

  35. Pan, E.: Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterials. Z. Angew. Math. Phys. 53, 815–838 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Pan, E., Chen, W.Q.: Static Green’s Functions in Anisotropic Media. Cambridge University Press, New York (2015)

    MATH  Google Scholar 

  37. Park, S.K., Gao, X.-L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Google Scholar 

  38. Park, S.K., Gao, X.-L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59, 904–917 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Ramirez, F., Heyliger, P.R., Pan, E.: Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mech. Adv. Mater. Struct. 13, 249–266 (2006)

    Google Scholar 

  40. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Wiley, Hoboken (2002)

    Google Scholar 

  41. Salas, R.A., Ramírez, F.J., Montealegre-Rubio, W., Silva, E.C.N., Reddy, J.N.: A topology optimization formulation for transient design of multi-entry laminated piezocomposite energy harvesting devices coupled with electrical circuit. Int. J. Numer. Methods Eng. 113, 1370–1410 (2018)

    MathSciNet  Google Scholar 

  42. Wang, J., Chen, L., Fang, S.: State vector approach to analysis of multilayered magneto-electro-elastic plates. Int. J. Solids Struct. 40, 1669–1680 (2003)

    MATH  Google Scholar 

  43. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)

    Google Scholar 

  44. Wang, Y., Xu, R., Ding, H.: Axisymmetric bending of functionally graded circular magneto-electro-elastic plates. Eur. J. Mech. A/Solids 30, 999–1011 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Wang, Q.: On buckling of column structures with a pair of piezoelectric layers. Eng. Struct. 24, 199–205 (2002)

    Google Scholar 

  46. Wang, L.: Size-dependent vibration characteristics of fluid-conveying microtubes. J. Fluids Struct. 26, 675–684 (2010)

    Google Scholar 

  47. Wang, W.J., Li, P., Jin, F.: Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications. Smart Mater. Struct. 25, 095026-1–095026-15 (2016)

    Google Scholar 

  48. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    MATH  Google Scholar 

  49. Yang, J.: An Introduction to the Theory of Piezoelectricity. Springer, New York (2005)

    MATH  Google Scholar 

  50. Yang, J.: The Mechanics of Piezoelectric Structures. World Scientific Publishing, Singapore (2006)

    Google Scholar 

  51. Yang, J.: Piezoelectric transformer structural modeling—a review. IEEE Trans. Ultrason. Ferroelect. Freq. Control 54, 1154–1170 (2007)

    Google Scholar 

  52. Zhang, G.Y., Gao, X.L., Guo, Z.Y.: A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mech. 228, 3811–3825 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work reported here is funded by the National Natural Science Foundation of China (Grants # 11672223 and 11972276). The junior authors are also grateful to Prof. Jiashi Yang for fruitful discussions on the subject of piezoelectricity. In addition, we would like to thank Professor George Weng and an anonymous reviewer for their encouragement and helpful comments on an earlier version of the paper.

Funding

This work was supported by National Natural Science Foundation of China (Grant Nos. 11672223, 11972276).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Y. Zhang or F. Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Stress resultants and couple stress resultants in terms of u,v,w,\(\phi _{x}\), \(\phi _{y}\), \(\gamma \), and \(\zeta \):

$$\begin{aligned} N_{xx}= & {} h\left[ {C_{11} u_{,x} +C_{12} v_{,y} } \right. +k_{s} C_{14} \left( {w_{,y} -\phi _{y} } \right) +k_{s} C_{15} \left( {w_{,x} -\phi _{x} } \right) +C_{16} \left( {u_{,y} +v_{,x} } \right) \nonumber \\&+\frac{1}{2}B_{11} \left( {w_{,xy} +\phi _{y,x} } \right) -\frac{1}{2}B_{12} \left( {w_{,xy} +\phi _{x,y} } \right) +\frac{1}{2}B_{13} \left( {\phi _{x,y} -\phi _{y,x} } \right) +\frac{1}{2}B_{14} \left( {v_{,xy} -u_{,yy} } \right) \nonumber \\&+\frac{1}{2}B_{15} \left( {v_{,xx} -u_{,xy} } \right) \left. {+\frac{1}{2}B_{16} \left( {w_{,yy} +\phi _{y,y} -w_{,xx} -\phi _{x,x} } \right) } \right] -\frac{2h}{\pi }e_{11} \gamma _{,x} -\frac{2h}{\pi }e_{21} \gamma _{,y} \nonumber \\&+2e_{31} \gamma _{0} -\frac{2h}{\pi }q_{11} \zeta _{,x} -\frac{2h}{\pi }q_{21} \zeta _{,y} +2q_{31} \zeta _{0} , \end{aligned}$$
(A.1)
$$\begin{aligned} N_{yy}= & {} h\left[ {C_{12} u_{,x} +C_{22} v_{,y} +k_{s} C_{24} \left( {w_{,y} -\phi _{y} } \right) } \right. +k_{s} C_{25} \left( {w_{,x} -\phi _{x} } \right) +C_{26} \left( {u_{,y} +v_{,x} } \right) \nonumber \\&+\frac{1}{2}B_{21} \left( {w_{,xy} +\phi _{y,x} } \right) -\frac{1}{2}B_{22} \left( {w_{,xy} +\phi _{x,y} } \right) +\frac{1}{2}B_{23} \left( {\phi _{x,y} -\phi _{y,x} } \right) +\frac{1}{2}B_{24} \left( {v_{,xy} -u_{,yy} } \right) \nonumber \\&+\frac{1}{2}B_{25} \left( {v_{,xx} -u_{,xy} } \right) +\left. {\frac{1}{2}B_{26} \left( {w_{,yy} +\phi _{y,y} -w_{,xx} -\phi _{x,x} } \right) } \right] -\frac{2h}{\pi }e_{12} \gamma _{,x} -\frac{2h}{\pi }e_{22} \gamma _{,y} \nonumber \\&+2e_{32} \gamma _{0} -\frac{2h}{\pi }q_{12} \zeta _{,x} -\frac{2h}{\pi }q_{22} \zeta _{,y} +2q_{32} \zeta _{0} , \end{aligned}$$
(A.2)
$$\begin{aligned} N_{zy}= & {} h\left[ {k_{s} C_{14} u_{,x} +k_{s} C_{24} v_{,y} } \right. +k_{s}^{2} C_{44} \left( {w_{,y} -\phi _{y} } \right) +k_{s}^{2} C_{45} \left( {w_{,x} -\phi _{x} } \right) +k_{s} C_{46} \left( {u_{,y} +v_{,x} } \right) \nonumber \\&+\frac{1}{2}k_{s} B_{41} \left( {w_{,xy} +\phi _{y,x} } \right) -\frac{1}{2}k_{s} B_{42} \left( {w_{,xy} +\phi _{x,y} } \right) +\frac{1}{2}k_{s} B_{43} \left( {\phi _{x,y} -\phi _{y,x} } \right) \nonumber \\&+\frac{1}{2}k_{s} B_{44} \left( {v_{,xy} -u_{,yy} } \right) +\frac{1}{2}k_{s} B_{45} \left( {v_{,xx} -u_{,xy} } \right) +\left. {\frac{1}{2}k_{s} B_{46} \left( {w_{,yy} +\phi _{y,y} -w_{,xx} -\phi _{x,x} } \right) } \right] \nonumber \\&-\frac{2h}{\pi }k_{s} e_{14} \gamma _{,x} -\frac{2h}{\pi }k_{s} e_{24} \gamma _{,y} +2k_{s} e_{34} \gamma _{0} -\frac{2h}{\pi }k_{s} q_{14} \zeta _{,x} -\frac{2h}{\pi }k_{s} q_{24} \zeta _{,y} +2k_{s} q_{34} \zeta _{0} , \end{aligned}$$
(A.3)
$$\begin{aligned} N_{zx}= & {} h\left[ {k_{s} C_{15} u_{,x} } \right. +k_{s} C_{25} v_{,y} +k_{s}^{2} C_{45} \left( {w_{,y} -\phi _{y} } \right) +k_{s}^{2} C_{55} \left( {w_{,x} -\phi _{x} } \right) +k_{s} C_{56} \left( {u_{,y} +v_{,x} } \right) \nonumber \\&+\frac{1}{2}k_{s} B_{51} \left( {w_{,xy} +\phi _{y,x} } \right) -\frac{1}{2}k_{s} B_{52} \left( {w_{,xy} +\phi _{x,y} } \right) +\frac{1}{2}k_{s} B_{53} \left( {\phi _{x,y} -\phi _{y,x} } \right) \nonumber \\&+\frac{1}{2}k_{s} B_{54} \left( {v_{,xy} -u_{,yy} } \right) +\frac{1}{2}k_{s} B_{55} \left( {v_{,xx} -u_{,xy} } \right) +\left. {\frac{1}{2}k_{s} B_{56} \left( {w_{,yy} +\phi _{y,y} -w_{,xx} -\phi _{x,x} } \right) } \right] \nonumber \\&-\frac{2h}{\pi }k_{s} e_{15} \gamma _{,x} -\frac{2h}{\pi }k_{s} e_{25} \gamma _{,y} +2k_{s} e_{35} \gamma _{0} -\frac{2h}{\pi }k_{s} q_{15} \zeta _{,x} -\frac{2h}{\pi }k_{s} q_{25} \zeta _{,y} +2k_{s} q_{35} \zeta _{0} , \end{aligned}$$
(A.4)
$$\begin{aligned} N_{xy}= & {} h\left[ {C_{16} u_{,x} +C_{26} v_{,y} } \right. +k_{s} C_{46} \left( {w_{,y} -\phi _{y} } \right) +k_{s} C_{56} \left( {w_{,x} -\phi _{x} } \right) +C_{66} \left( {u_{,y} +v_{,x} } \right) \nonumber \\&+\frac{1}{2}B_{61} \left( {w_{,xy} +\phi _{y,x} } \right) -\frac{1}{2}B_{62} \left( {w_{,xy} +\phi _{x,y} } \right) +\frac{1}{2}B_{63} \left( {\phi _{x,y} -\phi _{y,x} } \right) +\frac{1}{2}B_{64} \left( {v_{,xy} -u_{,yy} } \right) \nonumber \\&+\frac{1}{2}B_{65} \left( {v_{,xx} -u_{,xy} } \right) +\left. {\frac{1}{2}B_{66} \left( {w_{,yy} +\phi _{y,y} -w_{,xx} -\phi _{x,x} } \right) } \right] -\frac{2h}{\pi }e_{16} \gamma _{,x} -\frac{2h}{\pi }e_{26} \gamma _{,y} \nonumber \\&+2e_{36} \gamma _{0} -\frac{2h}{\pi }q_{16} \zeta _{,x} -\frac{2h}{\pi }q_{26} \zeta _{,y} +2q_{36} \zeta _{0} , \end{aligned}$$
(A.5)
$$\begin{aligned} M_{xx}= & {} -\frac{h^{3}}{12}\left[ {C_{11} \phi _{x,x} +C_{12} \phi _{y,y} } \right. +C_{16} \left( {\phi _{x,y} +\phi _{y,x} } \right) +\frac{1}{2}B_{14} \left( {\phi _{y,xy} -\phi _{x,yy} } \right) \nonumber \\&+\left. {\frac{1}{2}B_{15} \left( {\phi _{y,xx} -\phi _{x,xy} } \right) } \right] +\frac{2h}{\pi }e_{31} \gamma +\frac{2h}{\pi }q_{31} \zeta , \end{aligned}$$
(A.6)
$$\begin{aligned} M_{yy}= & {} -\frac{h^{3}}{12}\left[ {C_{12} \phi _{x,x} +C_{22} \phi _{y,y} } \right. +C_{26} \left( {\phi _{x,y} +\phi _{y,x} } \right) +\frac{1}{2}B_{24} \left( {\phi _{y,xy} -\phi _{x,yy} } \right) \nonumber \\&+\left. {\frac{1}{2}B_{25} \left( {\phi _{y,xx} -\phi _{x,xy} } \right) } \right] +\frac{2h}{\pi }e_{32} \gamma +\frac{2h}{\pi }q_{32} \zeta , \end{aligned}$$
(A.7)
$$\begin{aligned} M_{xy}= & {} -\frac{h^{3}}{12}\left[ {C_{16} \phi _{x,x} +C_{26} \phi _{y,y} } \right. +C_{66} \left( {\phi _{x,y} +\phi _{y,x} } \right) +\frac{1}{2}B_{64} \left( {\phi _{y,xy} -\phi _{x,yy} } \right) \nonumber \\&+\left. {\frac{1}{2}B_{65} \left( {\phi _{y,xx} -\phi _{x,xy} } \right) } \right] +\frac{2h}{\pi }e_{36} \gamma +\frac{2h}{\pi }q_{36} \zeta , \end{aligned}$$
(A.8)
$$\begin{aligned} Y_{xx}= & {} h\left[ {\frac{1}{2}A_{11} \left( {w_{,xy} +\phi _{y,x} } \right) } \right. -\frac{1}{2}A_{12} \left( {w_{,xy} +\phi _{x,y} } \right) +\frac{1}{2}A_{13} \left( {\phi _{x,y} -\phi _{y,x} } \right) +\frac{1}{2}A_{14} \left( {v_{,xy} -u_{,yy} } \right) \nonumber \\&+\frac{1}{2}A_{15} \left( {v_{,xx} -u_{,xy} } \right) +\frac{1}{2}A_{16} \left( {w_{,yy} +\phi _{y,y} -w_{,xx} -\phi _{x,x} } \right) +B_{11} u_{,x} +B_{21} v_{,y} \nonumber \\&+k_{s} B_{41} \left( {w_{,y} -\phi _{y} } \right) +k_{s} B_{51} \left( {w_{,x} -\phi _{x} } \right) +\left. {B_{61} \left( {u_{,y} +v_{,x} } \right) } \right] , \end{aligned}$$
(A.9)
$$\begin{aligned} Y_{yy}= & {} h\left[ {\frac{1}{2}A_{12} \left( {w_{,xy} +\phi _{y,x} } \right) } \right. -\frac{1}{2}A_{22} \left( {w_{,xy} +\phi _{x,y} } \right) +\frac{1}{2}A_{23} \left( {\phi _{x,y} -\phi _{y,x} } \right) +\frac{1}{2}A_{24} \left( {v_{,xy} -u_{,yy} } \right) \nonumber \\&+\frac{1}{2}A_{25} \left( {v_{,xx} -u_{,xy} } \right) +\frac{1}{2}A_{26} \left( {w_{,yy} +\phi _{y,y} -w_{,xx} -\phi _{x,x} } \right) +B_{12} u_{,x} +B_{22} v_{,y} \nonumber \\&+k_{s} B_{42} \left( {w_{,y} -\phi _{y} } \right) +k_{s} B_{52} \left( {w_{,x} -\phi _{x} } \right) +\left. {B_{62} \left( {u_{,y} +v_{,x} } \right) } \right] , \end{aligned}$$
(A.10)
$$\begin{aligned} Y_{zz}= & {} h\left[ {\frac{1}{2}A_{13} \left( {w_{,xy} +\phi _{y,x} } \right) } \right. -\frac{1}{2}A_{23} \left( {w_{,xy} +\phi _{x,y} } \right) +\frac{1}{2}A_{33} \left( {\phi _{x,y} -\phi _{y,x} } \right) +\frac{1}{2}A_{34} \left( {v_{,xy} -u_{,yy} } \right) \nonumber \\&+\frac{1}{2}A_{35} \left( {v_{,xx} -u_{,xy} } \right) +\frac{1}{2}A_{36} \left( {w_{,yy} +\phi _{y,y} -w_{,xx} -\phi _{x,x} } \right) +B_{13} u_{,x} +B_{23} v_{,y} \nonumber \\&\quad +k_{s} B_{43} \left( {w_{,y} -\phi _{y} } \right) +k_{s} B_{53} \left( {w_{,x} -\phi _{x} } \right) +\left. {B_{63} \left( {u_{,y} +v_{,x} } \right) } \right] , \end{aligned}$$
(A.11)
$$\begin{aligned} Y_{zy}= & {} h\left[ {\frac{1}{2}A_{14} \left( {w_{,xy} +\phi _{y,x} } \right) } \right. -\frac{1}{2}A_{24} \left( {w_{,xy} +\phi _{x,y} } \right) +\frac{1}{2}A_{34} \left( {\phi _{x,y} -\phi _{y,x} } \right) +\frac{1}{2}A_{44} \left( {v_{,xy} -u_{,yy} } \right) \nonumber \\&+\frac{1}{2}A_{45} \left( {v_{,xx} -u_{,xy} } \right) +\frac{1}{2}A_{46} \left( {w_{,yy} +\phi _{y,y} -w_{,xx} -\phi _{x,x} } \right) +B_{14} u_{,x} +B_{24} v_{,y} \nonumber \\&+k_{s} B_{44} \left( {w_{,y} -\phi _{y} } \right) +k_{s} B_{54} \left( {w_{,x} -\phi _{x} } \right) +\left. {B_{64} \left( {u_{,y} +v_{,x} } \right) } \right] , \end{aligned}$$
(A.12)
$$\begin{aligned} Y_{zx}= & {} h\left[ {\frac{1}{2}A_{15} \left( {w_{,xy} +\phi _{y,x} } \right) } \right. -\frac{1}{2}A_{25} \left( {w_{,xy} +\phi _{x,y} } \right) +\frac{1}{2}A_{35} \left( {\phi _{x,y} -\phi _{y,x} } \right) +\frac{1}{2}A_{45} \left( {v_{,xy} -u_{,yy} } \right) \nonumber \\&+\frac{1}{2}A_{55} \left( {v_{,xx} -u_{,xy} } \right) +\frac{1}{2}A_{56} \left( {w_{,yy} +\phi _{y,y} -w_{,xx} -\phi _{x,x} } \right) +B_{15} u_{,x} +B_{25} v_{,y} \nonumber \\&+k_{s} B_{45} \left( {w_{,y} -\phi _{y} } \right) +k_{s} B_{55} \left( {w_{,x} -\phi _{x} } \right) +\left. {B_{65} \left( {u_{,y} +v_{,x} } \right) } \right] , \end{aligned}$$
(A.13)
$$\begin{aligned} Y_{xy}= & {} h\left[ {\frac{1}{2}A_{16} \left( {w_{,xy} +\phi _{y,x} } \right) } \right. -\frac{1}{2}A_{26} \left( {w_{,xy} +\phi _{x,y} } \right) +\frac{1}{2}A_{36} \left( {\phi _{x,y} -\phi _{y,x} } \right) +\frac{1}{2}A_{46} \left( {v_{,xy} -u_{,yy} } \right) \nonumber \\&+\frac{1}{2}A_{56} \left( {v_{,xx} -u_{,xy} } \right) +\frac{1}{2}A_{66} \left( {w_{,yy} +\phi _{y,y} -w_{,xx} -\phi _{x,x} } \right) +B_{16} u_{,x} +B_{26} v_{,y} \nonumber \\&+k_{s} B_{46} \left( {w_{,y} -\phi _{y} } \right) +k_{s} B_{56} \left( {w_{,x} -\phi _{x} } \right) +\left. {B_{66} \left( {u_{,y} +v_{,x} } \right) } \right] , \end{aligned}$$
(A.14)
$$\begin{aligned} H_{yz}= & {} \frac{h^{3}}{12}\left[ {\frac{1}{2}A_{44} \left( {-\phi _{y,xy} +\phi _{x,yy} } \right) } \right. +\frac{1}{2}A_{45} \left( {-\phi _{y,xx} +\phi _{x,xy} } \right) -B_{14} \phi _{x,x} -B_{24} \phi _{y,y} \nonumber \\&-\left. {B_{64} \left( {\phi _{x,y} +\phi _{y,x} } \right) } \right] , \end{aligned}$$
(A.15)
$$\begin{aligned} H_{zx}= & {} \frac{h^{3}}{12}\left[ {\frac{1}{2}A_{45} \left( {-\phi _{y,xy} +\phi _{x,yy} } \right) } \right. +\frac{1}{2}A_{55} \left( {-\phi _{y,xx} +\phi _{x,xy} } \right) -B_{15} \phi _{x,x} -B_{25} \phi _{y,y} \nonumber \\&-\left. {B_{65} \left( {\phi _{x,y} +\phi _{y,x} } \right) } \right] , \end{aligned}$$
(A.16)
$$\begin{aligned} \Xi _{x}= & {} \frac{h}{2}\epsilon _{11} \gamma _{,x} +\frac{h}{2}\epsilon _{12} \gamma _{,y} -\frac{4}{\pi }\epsilon _{13} \gamma _{0} +\frac{h}{2}d_{11} \zeta _{,x} +\frac{h}{2}d_{12} \zeta _{,y} -\frac{4}{\pi }d_{13} \zeta _{0} +\frac{2h}{\pi }e_{11} u_{,x} \nonumber \\&+\frac{2h}{\pi }e_{12} v_{,y} +\frac{2h}{\pi }k_{s} e_{14} \left( {w_{,y} -\phi _{y} } \right) +\frac{2h}{\pi }k_{s} e_{15} \left( {w_{,x} -\phi _{x} } \right) +\frac{2h}{\pi }e_{16} \left( {u_{,y} +v_{,x} } \right) , \end{aligned}$$
(A.17)
$$\begin{aligned} \Xi _{y}= & {} \frac{h}{2}\epsilon _{12} \gamma _{,x} +\frac{h}{2}\epsilon _{22} \gamma _{,y} -\frac{4}{\pi }\epsilon _{23} \gamma _{0} +\frac{h}{2}d_{21} \zeta _{,x} +\frac{h}{2}d_{22} \zeta _{,y} -\frac{4}{\pi }d_{23} \zeta _{0} +\frac{2h}{\pi }e_{21} u_{,x} \nonumber \\&+\frac{2h}{\pi }e_{22} v_{,y} +\frac{2h}{\pi }k_{s} e_{24} \left( {w_{,y} -\phi _{y} } \right) +\frac{2h}{\pi }k_{s} e_{25} \left( {w_{,x} -\phi _{x} } \right) +\frac{2h}{\pi }e_{26} \left( {u_{,y} +v_{,x} } \right) , \end{aligned}$$
(A.18)
$$\begin{aligned} \Xi _{z}= & {} -\frac{\pi ^{2}}{2h}\epsilon _{33} \gamma -\frac{\pi ^{2}}{2h}d_{33} \zeta -\frac{2h}{\pi }e_{31} \phi _{x,x} -\frac{2h}{\pi }e_{32} \phi _{y,y} -\frac{2h}{\pi }e_{36} \left( {\phi _{x,y} +\phi _{y,x} } \right) , \end{aligned}$$
(A.19)
$$\begin{aligned} \Sigma _{x}= & {} \frac{h}{2}\mu _{11} \zeta _{,x} +\frac{h}{2}\mu _{12} \zeta _{,y} -\frac{4}{\pi }\mu _{13} \zeta _{0} +\frac{h}{2}d_{11} \gamma _{,x} +\frac{h}{2}d_{12} \gamma _{,y} -\frac{4}{\pi }d_{13} \gamma _{0} +\frac{2h}{\pi }q_{11} u_{,x} \nonumber \\&+\frac{2h}{\pi }q_{12} v_{,y} +\frac{2h}{\pi }k_{s} q_{14} \left( {w_{,y} -\phi _{y} } \right) +\frac{2h}{\pi }k_{s} q_{15} \left( {w_{,x} -\phi _{x} } \right) +\frac{2h}{\pi }q_{16} \left( {u_{,y} +v_{,x} } \right) , \end{aligned}$$
(A.20)
$$\begin{aligned} \Sigma _{y}= & {} \frac{h}{2}\mu _{12} \zeta _{,x} +\frac{h}{2}\mu _{22} \zeta _{,y} -\frac{4}{\pi }\mu _{23} \zeta _{0} +\frac{h}{2}d_{21} \gamma _{,x} +\frac{h}{2}d_{22} \gamma _{,y} -\frac{4}{\pi }d_{23} \gamma _{0} +\frac{2h}{\pi }q_{21} u_{,x} \nonumber \\&+\frac{2h}{\pi }q_{22} v_{,y} +\frac{2h}{\pi }k_{s} q_{24} \left( {w_{,y} -\phi _{y} } \right) +\frac{2h}{\pi }k_{s} q_{25} \left( {w_{,x} -\phi _{x} } \right) +\frac{2h}{\pi }q_{26} \left( {u_{,y} +v_{,x} } \right) , \end{aligned}$$
(A.21)
$$\begin{aligned} \Sigma _{z}= & {} -\frac{\pi ^{2}}{2h}\mu _{33} \zeta -\frac{\pi ^{2}}{2h}d_{33} \gamma -\frac{2h}{\pi }q_{31} \phi _{x,x} -\frac{2h}{\pi }q_{32} \phi _{y,y} -\frac{2h}{\pi }q_{36} \left( {\phi _{x,y} +\phi _{y,x} } \right) \end{aligned}$$
(A.22)

where \(k_{s} \) is a shape correction factor introduced to account for the non-uniformity of the shear strain components \(\varepsilon _{xz} \) and \(\varepsilon _{yz} \) over the plate thickness such that \(\varepsilon _{xz} \rightarrow k_{s} \varepsilon _{xz} \) and \(\varepsilon _{yz} \rightarrow k_{s} \varepsilon _{yz} \) (e.g., [30, 31, 50]).

Appendix B

In this Appendix, it is shown that the new anisotropic magneto-electro-elastic Mindlin plate model developed in Sect. 3 includes three models for orthotropic, transversely isotropic, and isotropic plates as special cases.

1.1 Orthotropic magneto-electro-elastic Mindlin plate model incorporating the microstructure effects

For an orthotropic magneto-electro-elastic material, the constitutive equations in Eqs. (8.14) reduce to (e.g., [39, 42, 52])

$$\begin{aligned}&\left\{ {{\begin{array}{*{20}c} {\sigma _{xx} } \\ {\sigma _{yy} } \\ {\sigma _{zz} } \\ {\begin{array}{l} \sigma _{yz} \\ \sigma _{zx} \\ \sigma _{xy} \\ \end{array}} \\ \end{array} }} \right\} =\left[ {{\begin{array}{*{20}c} {C_{11} } &{} {C_{12} } &{} {C_{13} } &{} 0 &{} 0 &{} 0 \\ {C_{12} } &{} {C_{22} } &{} {C_{23} } &{} 0 &{} 0 &{} 0 \\ {C_{13} } &{} {C_{23} } &{} {C_{33} } &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} {C_{44} } &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} {C_{55} } &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {C_{66} } \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {\varepsilon _{xx} } \\ {\varepsilon _{yy} } \\ {\varepsilon _{zz} } \\ {\begin{array}{l} 2\varepsilon _{yz} \\ 2\varepsilon _{zx} \\ 2\varepsilon _{xy} \\ \end{array}} \\ \end{array} }} \right\} -\left[ {{\begin{array}{*{20}c} 0 &{} 0 &{} {e_{31} } \\ 0 &{} 0 &{} {e_{32} } \\ 0 &{} 0 &{} {e_{33} } \\ 0 &{} {e_{24} } &{} 0 \\ {e_{15} } &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {E_{x} } \\ {E_{y} } \\ {E_{z} } \\ \end{array} }} \right\} -\left[ {{\begin{array}{*{20}c} 0 &{} 0 &{} {q_{31} } \\ 0 &{} 0 &{} {q_{32} } \\ 0 &{} 0 &{} {q_{33} } \\ 0 &{} {q_{24} } &{} 0 \\ {q_{15} } &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {H_{x} } \\ {H_{y} } \\ {H_{z} } \\ \end{array} }} \right\} , \end{aligned}$$
(B.1.1.1)
$$\begin{aligned}&\left\{ {{\begin{array}{*{20}c} {m_{xx} } \\ {m_{yy} } \\ {m_{zz} } \\ {\begin{array}{l} m_{yz} \\ m_{zx} \\ m_{xy} \\ \end{array}} \\ \end{array} }} \right\} =\left[ {{\begin{array}{*{20}c} {A_{11} } &{} {A_{12} } &{} {A_{13} } &{} 0 &{} 0 &{} 0 \\ {A_{12} } &{} {A_{22} } &{} {A_{23} } &{} 0 &{} 0 &{} 0 \\ {A_{13} } &{} {A_{23} } &{} {A_{33} } &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} {A_{44} } &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} {A_{55} } &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {A_{66} } \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {\chi _{xx} } \\ {\chi _{yy} } \\ {\chi _{zz} } \\ {\begin{array}{l} 2\chi _{yz} \\ 2\chi _{zx} \\ 2\chi _{xy} \\ \end{array}} \\ \end{array} }} \right\} , \end{aligned}$$
(B.1.1.2)
$$\begin{aligned}&\left\{ {{\begin{array}{*{20}c} {D_{x} } \\ {D_{y} } \\ {D_{z} } \\ \end{array} }} \right\} =\left[ {{\begin{array}{*{20}c} 0 &{} 0 &{} 0 &{} 0 &{} {e_{15} } &{} 0 \\ 0 &{} 0 &{} 0 &{} {e_{24} } &{} 0 &{} 0 \\ {e_{31} } &{} {e_{32} } &{} {e_{33} } &{} 0 &{} 0 &{} 0 \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {\varepsilon _{xx} } \\ {\varepsilon _{yy} } \\ {\varepsilon _{zz} } \\ {\begin{array}{l} 2\varepsilon _{yz} \\ 2\varepsilon _{zx} \\ 2\varepsilon _{xy} \\ \end{array}} \\ \end{array} }} \right\} +\left[ {{\begin{array}{*{20}c} {\epsilon _{11} } &{} 0 &{} 0 \\ 0 &{} {\epsilon _{22} } &{} 0 \\ 0 &{} 0 &{} {\epsilon _{33} } \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {E_{x} } \\ {E_{y} } \\ {E_{z} } \\ \end{array} }} \right\} +\left[ {{\begin{array}{*{20}c} {d_{11} } &{} 0 &{} 0 \\ 0 &{} {d_{22} } &{} 0 \\ 0 &{} 0 &{} {d_{33} } \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {H_{x} } \\ {H_{y} } \\ {H_{z} } \\ \end{array} }} \right\} , \end{aligned}$$
(B.1.1.3)
$$\begin{aligned}&\left\{ {{\begin{array}{*{20}c} {B_{x} } \\ {B_{y} } \\ {B_{z} } \\ \end{array} }} \right\} =\left[ {{\begin{array}{*{20}c} 0 &{} 0 &{} 0 &{} 0 &{} {q_{15} } &{} 0 \\ 0 &{} 0 &{} 0 &{} {q_{24} } &{} 0 &{} 0 \\ {q_{31} } &{} {q_{32} } &{} {q_{33} } &{} 0 &{} 0 &{} 0 \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {\varepsilon _{xx} } \\ {\varepsilon _{yy} } \\ {\varepsilon _{zz} } \\ {\begin{array}{l} 2\varepsilon _{yz} \\ 2\varepsilon _{zx} \\ 2\varepsilon _{xy} \\ \end{array}} \\ \end{array} }} \right\} +\left[ {{\begin{array}{*{20}c} {d_{11} } &{} 0 &{} 0 \\ 0 &{} {d_{22} } &{} 0 \\ 0 &{} 0 &{} {d_{33} } \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {E_{x} } \\ {E_{y} } \\ {E_{z} } \\ \end{array} }} \right\} +\left[ {{\begin{array}{*{20}c} {\mu _{11} } &{} 0 &{} 0 \\ 0 &{} {\mu _{22} } &{} 0 \\ 0 &{} 0 &{} {\mu _{33} } \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {H_{x} } \\ {H_{y} } \\ {H_{z} } \\ \end{array} }} \right\} . \end{aligned}$$
(B.1.1.4)

For an orthotropic elastic Mindlin plate with \(C_{\mathrm{11}}\), \(C_{\mathrm{12}}\), \(C_{\mathrm{13}}\), \(C_{\mathrm{22}}\), \(C_{\mathrm{23}}\), \(C_{\mathrm{33}}\), \(C_{\mathrm{44}}\), \(C_{\mathrm{55}}\), \(C_{\mathrm{66}}\), \(A_{\mathrm{11}}\), \(A_{\mathrm{12}}\), \(A_{\mathrm{13}}\), \(A_{\mathrm{22}}\), \(A_{\mathrm{23}}\), \(A_{\mathrm{33}}\), \(A_{\mathrm{44}}\), \(A_{\mathrm{55}}\), \(A_{\mathrm{66}}\), \(e_{\mathrm{15}}\), \(e_{\mathrm{24}}\), \(e_{\mathrm{31}}\), \(e_{\mathrm{32}}\), \(e_{\mathrm{33}}\), \(q_{\mathrm{15}}\), \(q_{\mathrm{24}}\), \(q_{\mathrm{31}}\), \(q_{\mathrm{32}}\), \(q_{\mathrm{33}}\), \(\epsilon _{\mathrm{11}}\), \(\epsilon _{\mathrm{22}}\), \(\epsilon _{\mathrm{33}}\), \(d_{\mathrm{11}}\), \(d_{\mathrm{22}}\), \(d_{\mathrm{33}}\), \(\mu _{\mathrm{11}}\), \(\mu _{\mathrm{22 }}\), and \(\mu _{\mathrm{33}}\) as the nonzero material constants in Eqs. (A.1)–(A.22) the equations of motion can be expressed in terms of the u,v,w, \(\phi _{x}\), \(\phi _{y}\), \(\gamma \), and \(\zeta \) as, after substituting the resulting equations from Eqs. (A.1)–(A.22) into Eqs. (31.17),

$$\begin{aligned}&h\left( {C_{11} u_{,xx} +C_{12} v_{,xy} } \right) +hC_{66} \left( {u_{,yy} +v_{,xy} } \right) +\frac{hA_{55} }{4}\left( {-u_{,xxyy} +v_{,xxxy} } \right) +\frac{hA_{44} }{4}\left( {-u_{,yyyy} +v_{,xyyy} } \right) \nonumber \\&\quad +f_{x} +\frac{1}{2}c_{z,y} =m_{0} \ddot{{u}}, \end{aligned}$$
(B.1.2.1)
$$\begin{aligned}&h\left( {C_{12} u_{,xy} +C_{22} v_{,yy} } \right) +hC_{66} \left( {u_{,xy} +v_{,xx} } \right) +\frac{hA_{55} }{4}\left( {u_{,xxxy} -v_{,xxxx} } \right) +\frac{hA_{44} }{4}\left( {u_{,xyyy} -v_{,xxyy} } \right) \nonumber \\&\quad +f_{y} -\frac{1}{2}c_{z,x} =m_{0} \ddot{{v}}, \end{aligned}$$
(B.1.2.2)
$$\begin{aligned}&hk_{s}^{2} C_{55} \left( {w_{,xx} -\phi _{x,x} } \right) +hk_{s}^{2} C_{44} \left( {w_{,yy} -\phi _{y,y} } \right) -\frac{1}{4}h\left[ {\left( {A_{11} -2A_{12} +A_{22} } \right) w_{,xxyy} +(-A_{12} +A_{22} } \right. \nonumber \\&\quad +A_{13} -A_{23} )\phi _{x,xyy} +\left( {A_{11} -A_{12} -A_{13} +A_{23} } \right) \left. {\phi _{y,xxy} } \right] +\frac{1}{4}hA_{66} (-w_{,xxxx} +2w_{,xxyy} -w_{,yyyy} \nonumber \\&\quad -\phi _{x,xxx} +\phi _{x,xyy} +\phi _{y,xxy} -\phi _{y,yyy} )-\frac{2}{\pi }hk_{s} \left( {e_{15} \gamma _{,xx} +e_{24} \gamma _{,yy} } \right) -\frac{2}{\pi }hk_{s} \left( {q_{15} \zeta _{,xx} +q_{24} \zeta _{,yy} } \right) \nonumber \\&\quad +f_{z} -\frac{1}{2}\frac{\partial c_{x} }{\partial y} +\frac{1}{2}\frac{\partial c_{y} }{\partial x}=m_{0} \ddot{{w}}, \end{aligned}$$
(B.1.2.3)
$$\begin{aligned}&hk_{s}^{2} C_{55} \left( {w_{,x} -\phi _{x} } \right) +\frac{1}{12}h^{3}\left( {C_{11} \phi _{x,xx} +C_{12} \phi _{y,xy} } \right) +\frac{h^{3}C_{66} }{12}\left( {\phi _{x,yy} +\phi _{y,xy} } \right) +\frac{1}{4}hA_{66} (w_{,xxx} -w_{,xyy} \nonumber \\&\quad +\phi _{x,xx} -\phi _{y,xy} )+\frac{1}{4}h\left[ {\left( {-A_{12} +A_{22} +A_{13} -A_{23} } \right) } \right. w_{,xyy} +(A_{22} +A_{33} -2A_{23} )\phi _{x,yy} \nonumber \\&\quad +\left( {A_{13} +A_{23} -A_{12} -A_{\text{33 }} } \right) \left. {\phi _{y,xy} } \right] -\frac{h^{3}}{48}A_{55} \left( {\phi _{x,xxyy} -\phi _{y,xxxy} } \right) -\frac{h^{3}}{48}A_{44} \left( {\phi _{x,yyyy} -\phi _{y,xyyy} } \right) \nonumber \\&\quad -\frac{2h}{\pi }\left( {k_{s} e_{15} +e_{31} } \right) \gamma _{,x} -\frac{2h}{\pi }\left( {k_{s} q_{15} +q_{31} } \right) \zeta _{,x} -\frac{1}{2}c_{y} =m_{2} \ddot{{\phi }}_{x} , \end{aligned}$$
(B.1.2.4)
$$\begin{aligned}&hk_{s}^{2} C_{44} \left( {w_{,y} -\phi _{y} } \right) +\frac{1}{12}h^{3}\left( {C_{12} \phi _{x,xy} +C_{22} \phi _{y,yy} } \right) +\frac{h^{3}C_{66} }{12}\left( {\phi _{x,xy} +\phi _{y,xx} } \right) \text{+ }\frac{1}{4}h\left[ ( \right. A_{11} -A_{12} \nonumber \\&\quad -A_{13} +A_{23} )w_{,xxy} +(-A_{12} +A_{13} +A_{23} -A_{33} )\phi _{x,xy} +(A_{11} -2A_{13} +A_{33} \left. {)\phi _{y,xx} } \right] \nonumber \\&\quad +\frac{1}{4}hA_{66} \left( {w_{,yyy} +\phi _{y,yy} -w_{,xxy} -\phi _{x,xy} } \right) \,+\frac{h^{3}}{48}A_{55} \left( {\phi _{x,xxxy} -\phi _{y,xxxx} } \right) +\frac{h^{3}}{48}A_{44} \left( {\phi _{x,xyyy} -\phi _{y,xxyy} } \right) \nonumber \\&\quad -\frac{2h}{\pi }\left( {k_{s} e_{24} +e_{32} } \right) \gamma _{,y} -\frac{2h}{\pi }\left( {k_{s} q_{24} +q_{32} } \right) \zeta _{,y} +\frac{1}{2}c_{x} =m_{2} \ddot{{\phi }}_{y} , \end{aligned}$$
(B.1.2.5)
$$\begin{aligned}&\frac{4}{\pi }k_{s} e_{15} \left( {w_{,xx} -\phi _{xx} } \right) +\frac{4}{\pi }k_{s} e_{24} \left( {w_{,yy} -\phi _{yy} } \right) -\frac{4}{\pi }e_{31} \phi _{x,x} -\frac{4}{\pi }e_{32} \phi _{y,y} +\epsilon _{11} \gamma _{,xx} +\epsilon _{22} \gamma _{,yy} +d_{11} \zeta _{,xx} \nonumber \\&\quad +d_{22} \zeta _{,yy} -\frac{\pi ^{2}}{h^{2}}\epsilon _{33} \gamma -\frac{\pi ^{2}}{h^{2}}d_{33} \zeta =0, \end{aligned}$$
(B.1.2.6)
$$\begin{aligned}&\frac{4}{\pi }k_{s} q_{15} \left( {w_{,xx} -\phi _{xx} } \right) +\frac{4}{\pi }k_{s} q_{24} \left( {w_{,yy} -\phi _{yy} } \right) -\frac{4}{\pi }q_{31} \phi _{x,x} -\frac{4}{\pi }q_{32} \phi _{y,y} +\mu _{11} \zeta _{,xx} +\mu _{22} \zeta _{,yy} +d_{11} \gamma _{,xx} \nonumber \\&\quad +d_{22} \gamma _{,yy} -\frac{\pi ^{2}}{h^{2}}\mu _{33} \zeta -\frac{\pi ^{2}}{h^{2}}d_{33} \gamma =0. \end{aligned}$$
(B.1.2.7)

It is seen from Eqs. (B.1.2.17) that the in-plane displacements u and v are uncoupled with the out-of-plane displacement w, the rotation \(\phi _{x} \), and the rotation \(\phi _{y} \), and can therefore be obtained separately from solving Eqs. (B.1.2.1) and (B.1.2.2) subject to prescribed boundary conditions and suitable initial conditions.

1.2 Transversely isotropic magneto-electro-elastic Mindlin plate model incorporating the microstructure effects

For a transversely isotropic magneto-electro-elastic material (with \(B_{ijkl} \quad =\) 0), the constitutive equations in Eqs. (8.14) reduce to (e.g., [4])

$$\begin{aligned}&\left\{ {{\begin{array}{*{20}c} {\sigma _{xx} } \\ {\sigma _{yy} } \\ {\sigma _{zz} } \\ {\begin{array}{l} \sigma _{yz} \\ \sigma _{zx} \\ \sigma _{xy} \\ \end{array}} \\ \end{array} }} \right\} =\left[ {{\begin{array}{*{20}c} {C_{11} } &{} {C_{12} } &{} {C_{13} } &{} 0 &{} 0 &{} 0 \\ {C_{12} } &{} {C_{11} } &{} {C_{13} } &{} 0 &{} 0 &{} 0 \\ {C_{13} } &{} {C_{13} } &{} {C_{33} } &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} {C_{44} } &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} {C_{44} } &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {\frac{C_{11} -C_{12} }{2}} \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {\varepsilon _{xx} } \\ {\varepsilon _{yy} } \\ {\varepsilon _{zz} } \\ {\begin{array}{l} 2\varepsilon _{yz} \\ 2\varepsilon _{zx} \\ 2\varepsilon _{xy} \\ \end{array}} \\ \end{array} }} \right\} -\left[ {{\begin{array}{*{20}c} 0 &{} 0 &{} {e_{31} } \\ 0 &{} 0 &{} {e_{31} } \\ 0 &{} 0 &{} {e_{33} } \\ 0 &{} {e_{15} } &{} 0 \\ {e_{15} } &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {E_{x} } \\ {E_{y} } \\ {E_{z} } \\ \end{array} }} \right\} -\left[ {{\begin{array}{*{20}c} 0 &{} 0 &{} {q_{31} } \\ 0 &{} 0 &{} {q_{31} } \\ 0 &{} 0 &{} {q_{33} } \\ 0 &{} {q_{15} } &{} 0 \\ {q_{15} } &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {H_{x} } \\ {H_{y} } \\ {H_{z} } \\ \end{array} }} \right\} , \nonumber \\ \end{aligned}$$
(B.2.1.1)
$$\begin{aligned}&\left\{ {{\begin{array}{*{20}c} {m_{xx} } \\ {m_{yy} } \\ {m_{zz} } \\ {\begin{array}{l} m_{yz} \\ m_{zx} \\ m_{xy} \\ \end{array}} \\ \end{array} }} \right\} =\left[ {{\begin{array}{*{20}c} {A_{11} } &{} {A_{12} } &{} {A_{13} } &{} 0 &{} 0 &{} 0 \\ {A_{12} } &{} {A_{11} } &{} {A_{13} } &{} 0 &{} 0 &{} 0 \\ {A_{13} } &{} {A_{13} } &{} {A_{33} } &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} {A_{44} } &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} {A_{44} } &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {\frac{A_{{11}} -A_{{12}} }{2}} \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {\chi _{xx} } \\ {\chi _{yy} } \\ {\chi _{zz} } \\ {\begin{array}{l} 2\chi _{yz} \\ 2\chi _{zx} \\ 2\chi _{xy} \\ \end{array}} \\ \end{array} }} \right\} , \end{aligned}$$
(B.2.1.2)
$$\begin{aligned}&\left\{ {{\begin{array}{*{20}c} {D_{x} } \\ {D_{y} } \\ {D_{z} } \\ \end{array} }} \right\} =\left[ {{\begin{array}{*{20}c} 0 &{} 0 &{} 0 &{} 0 &{} {e_{15} } &{} 0 \\ 0 &{} 0 &{} 0 &{} {e_{15} } &{} 0 &{} 0 \\ {e_{31} } &{} {e_{31} } &{} {e_{33} } &{} 0 &{} 0 &{} 0 \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {\varepsilon _{xx} } \\ {\varepsilon _{yy} } \\ {\varepsilon _{zz} } \\ {\begin{array}{l} 2\varepsilon _{yz} \\ 2\varepsilon _{zx} \\ 2\varepsilon _{xy} \\ \end{array}} \\ \end{array} }} \right\} +\left[ {{\begin{array}{*{20}c} {\epsilon _{11} } &{} 0 &{} 0 \\ 0 &{} {\epsilon _{11} } &{} 0 \\ 0 &{} 0 &{} {\epsilon _{33} } \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {E_{x} } \\ {E_{y} } \\ {E_{z} } \\ \end{array} }} \right\} +\left[ {{\begin{array}{*{20}c} {d_{11} } &{} 0 &{} 0 \\ 0 &{} {d_{11} } &{} 0 \\ 0 &{} 0 &{} {d_{33} } \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {H_{x} } \\ {H_{y} } \\ {H_{z} } \\ \end{array} }} \right\} , \nonumber \\ \end{aligned}$$
(B.2.1.3)
$$\begin{aligned}&\left\{ {{\begin{array}{*{20}c} {B_{x} } \\ {B_{y} } \\ {B_{z} } \\ \end{array} }} \right\} =\left[ {{\begin{array}{*{20}c} 0 &{} 0 &{} 0 &{} 0 &{} {q_{15} } &{} 0 \\ 0 &{} 0 &{} 0 &{} {q_{15} } &{} 0 &{} 0 \\ {q_{31} } &{} {q_{31} } &{} {q_{33} } &{} 0 &{} 0 &{} 0 \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {\varepsilon _{xx} } \\ {\varepsilon _{yy} } \\ {\varepsilon _{zz} } \\ {\begin{array}{l} 2\varepsilon _{yz} \\ 2\varepsilon _{zx} \\ 2\varepsilon _{xy} \\ \end{array}} \\ \end{array} }} \right\} +\left[ {{\begin{array}{*{20}c} {d_{11} } &{} 0 &{} 0 \\ 0 &{} {d_{11} } &{} 0 \\ 0 &{} 0 &{} {d_{33} } \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {E_{x} } \\ {E_{y} } \\ {E_{z} } \\ \end{array} }} \right\} +\left[ {{\begin{array}{*{20}c} {\mu _{11} } &{} 0 &{} 0 \\ 0 &{} {\mu _{11} } &{} 0 \\ 0 &{} 0 &{} {\mu _{33} } \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {H_{x} } \\ {H_{y} } \\ {H_{z} } \\ \end{array} }} \right\} .\nonumber \\ \end{aligned}$$
(B.2.1.4)

When

$$\begin{aligned} \begin{array}{l} C_{11} =C_{22} , C_{13} =C_{23} ,\,\,\,\,C_{44} =C_{55} ,\,\,\,\,C_{66} =\left( {C_{11} -C_{12} } \right) /2, \\ A_{11} =A_{22} ,\,\,\,\,A_{13} =A_{23} ,\,\,\,\,A_{44} =A_{55} ,\,\,\,\,A_{66} =\left( {A_{11} -A_{12} } \right) /2, \\ e_{15} =e_{24} ,\,\,\,\,e_{31} =e_{32} ,\,\,\,\,q_{15} =q_{24} ,\,\,\,\,q_{31} =q_{32} ,\,\,\,\,\epsilon _{11} =\epsilon _{22} ,\,\,\,\,d_{11} =d_{22} ,\,\,\,\,\mu _{11} =\mu _{22} , \\ \end{array} \end{aligned}$$
(B.2.2)

Eqs. (B.1.2.17) reduce to the equations of motion of the transverse isotropic magneto-electro-elastic Mindlin plate in terms of u,v, w, \(\phi _{x}\), \(\phi _{y}\), \(\gamma \), and \(\zeta \) as

$$\begin{aligned}&h\left( {C_{11} u_{,xx} +C_{12} v_{,xy} } \right) +\frac{(C_{11} -C_{12} )h}{2}\left( {u_{,yy} +v_{,xy} } \right) +\frac{A_{44} h}{4}(-u_{,xxyy} -u_{,yyyy} +v_{,xxxy} +v_{,xyyy} ) \nonumber \\&\quad +f_{x} +\frac{1}{2}c_{z,y} =m_{0} \ddot{{u}}, \end{aligned}$$
(B.2.3.1)
$$\begin{aligned}&h\left( {C_{12} u_{,xy} +C_{11} v_{,yy} } \right) +\frac{\left( {C_{11} -C_{12} } \right) h}{2}\left( {u_{,xy} +v_{,xx} } \right) -\frac{A_{44} h}{4}\left( {-u_{,xyyy} -u_{,xxxy} +v_{,xxxx} +v_{,xxyy} } \right) \nonumber \\&\quad +f_{y} -\frac{1}{2}c_{z,x} =m_{0} \ddot{{v}}, \end{aligned}$$
(B.2.3.2)
$$\begin{aligned}&hk_{s}^{2} C_{44} \left( {w_{,xx} +w_{,yy} -\phi _{x,x} -\phi _{y,y} } \right) -\frac{h}{8}\left( {A_{11} -A_{12} } \right) (w_{,xxxx} +2w_{,xxyy} +w_{,yyyy} +\phi _{x,xxx} \nonumber \\&\quad +\phi _{x,xyy} +\phi _{y,xxy} +\phi _{y,yyy} )-\frac{2}{\pi }hk_{s} e_{15} \left( {\gamma _{,xx} +\gamma _{,yy} } \right) -\frac{2}{\pi }hk_{s} q_{15} \left( {\zeta _{,xx} +\zeta _{,yy} } \right) +f_{z} \nonumber \\&\quad -\frac{1}{2}\frac{\partial c_{x} }{\partial y}+\frac{1}{2}\frac{\partial c_{y} }{\partial x}=m_{0} \ddot{{w}}, \end{aligned}$$
(B.2.3.3)
$$\begin{aligned}&hk_{s}^{2} C_{44} \left( {w_{,x} -\phi _{x} } \right) +\frac{1}{12}h^{3}\left( {C_{11} \phi _{x,xx} +C_{12} \phi _{y,xy} } \right) +\frac{\left( {C_{11} -C_{12} } \right) h^{3}}{24}\left( {\phi _{x,yy} +\phi _{y,xy} } \right) \nonumber \\&\quad +\frac{h}{4}\left[ {\left( {A_{11} +A_{33} -2A_{\text{13 }} } \right) \phi _{x,yy} +\left( {2A_{13} -A_{12} -A_{\text{33 }} } \right) \phi _{y,xy} } \right] +\frac{\left( {A_{11} -A_{12} } \right) h}{8}(w_{,xxx} \nonumber \\&\quad +w_{,xyy} +\phi _{x,xx} -\phi _{y,xy} )-\frac{A_{44} h^{3}}{48}(\phi _{x,xxyy} +\phi _{x,yyyy} -\phi _{y,xxxy} -\phi _{y,xyyy} )-\frac{2h}{\pi }\left( {k_{s} e_{15} +e_{31} } \right) \gamma _{,x} \nonumber \\&\quad -\frac{2h}{\pi }\left( {k_{s} q_{15} +q_{31} } \right) \zeta _{,x} -\frac{1}{2}c_{y} =m_{2} \ddot{{\phi }}_{x} , \end{aligned}$$
(B.2.3.4)
$$\begin{aligned}&hk_{s}^{2} C_{44} \left( {w_{,y} -\phi _{y} } \right) \text{+ }\frac{1}{12}h^{3}\left( {C_{12} \phi _{x,xy} +C_{11} \phi _{y,yy} } \right) +\frac{\left( {C_{11} -C_{12} } \right) h^{3}}{24}\left( {\phi _{x,xy} +\phi _{y,xx} } \right) \nonumber \\&\quad +\frac{h}{4}\left[ {\left( {2A_{13} -A_{12} -A_{33} } \right) \phi _{x,xy} +\left( {A_{11} +A_{33} -2A_{13} } \right) \phi _{y,xx} } \right] +\frac{\left( {A_{11} -A_{12} } \right) h}{8}(w_{,xxy} \nonumber \\&\quad +w_{,yyy} -\phi _{x,xy} +\phi _{y,yy} )+\frac{A_{44} h^{3}}{48}(\phi _{x,xxxy} +\phi _{x,xyyy} -\phi _{y,xxxx} -\phi _{y,xxyy} )-\frac{2h}{\pi }\left( {k_{s} e_{15} +e_{31} } \right) \gamma _{,y} \nonumber \\&\quad -\frac{2h}{\pi }\left( {k_{s} q_{15} +q_{31} } \right) \zeta _{,y} +\frac{1}{2}c_{x} =m_{2} \ddot{{\phi }}_{y} , \end{aligned}$$
(B.2.3.5)
$$\begin{aligned}&\frac{4}{\pi }k_{s} e_{15} \left( {w_{,xx} +w_{,yy} -\phi _{x,x} -\phi _{y,y} } \right) -\frac{4}{\pi }e_{31} \left( {\phi _{x,x} +\phi _{y,y} } \right) \nonumber \\&\quad +\epsilon _{11} \left( {\gamma _{,xx} +\gamma _{,yy} } \right) +d_{11} \left( {\zeta _{,xx} +\zeta _{,yy} } \right) -\frac{\pi ^{2}}{h^{2}}\epsilon _{33} \gamma -\frac{\pi ^{2}}{h^{2}}d_{33} \zeta =0, \end{aligned}$$
(B.2.3.6)
$$\begin{aligned}&\frac{4}{\pi }k_{s} q_{15} \left( {w_{,xx} +w_{,yy} -\phi _{x,x} -\phi _{y,y} } \right) -\frac{4}{\pi }q_{31} \left( {\phi _{x,x} +\phi _{y,y} } \right) \nonumber \\&\quad \,\,\,\,\,+\mu _{11} \left( {\zeta _{,xx} +\zeta _{,yy} } \right) +d_{11} \left( {\gamma _{,xx} +\gamma _{,yy} } \right) -\frac{\pi ^{2}}{h^{2}}\mu _{33} \zeta -\frac{\pi ^{2}}{h^{2}}d_{33} \gamma =0. \end{aligned}$$
(B.2.3.7)

It is observed from Eqs. (B.2.3.17) that the in-plane displacements u and v are uncoupled with the out-of-plane displacement w, the rotation \(\phi _{x}\) and the rotation \(\phi _{y} \).

1.3 Isotropic elastic Mindlin plate model incorporating the microstructure effects

When

$$\begin{aligned} C_{11} =C_{33} =\lambda +2\mu , C_{12} =C_{13} =\lambda , C_{44} =\left( {C_{11} -C_{12} } \right) /2=\mu , \end{aligned}$$
(B.3.1)

Eq. (B.2.1.1) reduces to

$$\begin{aligned}&\left\{ {{\begin{array}{*{20}c} {\sigma _{xx} } \\ {\sigma _{yy} } \\ {\sigma _{zz} } \\ {\begin{array}{l} \sigma _{yz} \\ \sigma _{zx} \\ \sigma _{xy} \\ \end{array}} \\ \end{array} }} \right\} =\left[ {{\begin{array}{*{20}c} {\lambda +2\mu } &{} \lambda &{} \lambda &{} 0 &{} 0 &{} 0 \\ \lambda &{} {\lambda +2\mu } &{} \lambda &{} 0 &{} 0 &{} 0 \\ \lambda &{} \lambda &{} {\lambda +2\mu } &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} \mu &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} \mu &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \mu \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {\varepsilon _{xx} } \\ {\varepsilon _{yy} } \\ {\varepsilon _{zz} } \\ {\begin{array}{l} 2\varepsilon _{yz} \\ 2\varepsilon _{zx} \\ 2\varepsilon _{xy} \\ \end{array}} \\ \end{array} }} \right\} , \end{aligned}$$
(B.3.2)

which is the constitutive equation for an isotropic linear elastic material.

Similarly, when \(A_{11} =A_{33} , A_{12} =A_{13} , A_{44} =\left( {A_{11} -A_{12} } \right) /2\), Eq. (B.2.1.2) becomes

$$\begin{aligned} \left\{ {{\begin{array}{*{20}c} {m_{xx} } \\ {m_{yy} } \\ {m_{zz} } \\ {\begin{array}{l} m_{yz} \\ m_{zx} \\ m_{xy} \\ \end{array}} \\ \end{array} }} \right\} =\left[ {{\begin{array}{*{20}c} {A_{11} } &{} {A_{12} } &{} {A_{12} } &{} 0 &{} 0 &{} 0 \\ {A_{12} } &{} {A_{11} } &{} {A_{12} } &{} 0 &{} 0 &{} 0 \\ {A_{12} } &{} {A_{12} } &{} {A_{11} } &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} {\frac{A_{{11}} -A_{{12}} }{2}} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} {\frac{A_{{11}} -A_{{12}} }{2}} &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {\frac{A_{{11}} -A_{{12}} }{2}} \\ \end{array} }} \right] \left\{ {{\begin{array}{*{20}c} {\chi _{xx} } \\ {\chi _{yy} } \\ {\chi _{zz} } \\ {\begin{array}{l} 2\chi _{yz} \\ 2\chi _{zx} \\ 2\chi _{xy} \\ \end{array}} \\ \end{array} }} \right\} . \end{aligned}$$
(B.3.3)

Using Eq. (23) in Eq. (B.3.3) then yields

$$\begin{aligned} m_{xx} =\left( {A_{11} -A_{12} } \right) \chi _{xx} ,\,\,\,m_{yy} =\left( {A_{11} -A_{12} } \right) \chi _{yy} ,\,\,\,m_{zz} =\left( {A_{11} -A_{12} } \right) \chi _{zz} . \end{aligned}$$
(B.3.4)

Hence, the constitutive equation for an isotropic linear elastic material can be written as

$$\begin{aligned} m_{ij} =\left( {A_{11} -A_{12} } \right) {\chi }_{\textit{ij}} . \end{aligned}$$
(B.3.5)

Note that when

$$\begin{aligned} \left( {A_{11} -A_{12} } \right) =2\,l^{2}\mu , \end{aligned}$$
(B.3.6)

Eq. (B.3.5) is the same as the constitutive relation in the modified couple stress theory [38, 48].

For the isotropic elastic Mindlin plate with

$$\begin{aligned} \begin{array}{l} C_{11} =C_{33} =\lambda +2\mu ,\,\,\,\,C_{12} =C_{13} =\lambda ,\,\,\,\,C_{44} =\left( {C_{11} -C_{12} } \right) /2=\mu , \\ A_{11} =A_{33} ,\,\,\,\,A_{12} =A_{13} ,\,\,\,\,A_{44} =\left( {A_{11} -A_{12} } \right) /2=\,l^{2}\mu ,\,\,\,\,\gamma =0,\,\,\,\,\zeta =0, \\ \end{array} \end{aligned}$$
(B.3.7)

Eqs. (B.2.3.17) reduce to

$$\begin{aligned}&(\lambda +2\mu )hu_{,xx} +\mu hu_{,yy} +(\lambda +\mu )hv_{,xy} +\frac{1}{4}l^{2}\mu h(-u_{,xxyy} -u_{,yyyy} +v_{,xxxy} +v_{,xyyy} )\nonumber \\&\quad +f_{x} +\frac{1}{2}c_{z,y} =m_{0} \ddot{{u}}, \end{aligned}$$
(B.3.8.1)
$$\begin{aligned}&(\lambda +2\mu )hv_{,yy} +\mu hv_{,xx} +(\lambda +\mu )hu_{,xy} +\frac{1}{4}l^{2}\mu h(-v_{,xxyy} -v_{,xxxx} +u_{,xxxy} +u_{,xyyy} ) \nonumber \\&\quad +f_{y} -\frac{1}{2}c_{z,x} =m_{0} \ddot{{v}}, \end{aligned}$$
(B.3.8.2)
$$\begin{aligned}&k_{s}^{2} \mu h(w_{,xx} +w_{,yy} -\phi _{x,x} -\phi _{y,y}) -\frac{1}{4}l^{2}\mu h(w_{,xxxx} +2w_{,xxyy} +w_{,yyyy} +\phi _{x,xxx} +\phi _{x,xyy} +\phi _{y,xxy} \nonumber \\&\quad +\phi _{y,yyy} )+f_{z} -\frac{1}{2}c_{x,y} +\frac{1}{2}c_{y,x} =m_{0} \ddot{{w}}, \end{aligned}$$
(B.3.8.3)
$$\begin{aligned}&\quad -\frac{h^{3}}{12}(\lambda +2\mu )\phi _{x,xx} -\frac{h^{3}}{12}\mu \phi _{x,yy} -\frac{h^{3}}{12}(\lambda +\mu )\phi _{y,xy} -k_{s}^{2} \mu h(w_{,x} -\phi _{x} )-\frac{l^{2}\mu h^{3}}{48}(-\phi _{x,xxyy} -\phi _{x,yyyy} \nonumber \\&\quad +\phi _{y,xxxy} +\phi _{y,xyyy} )+\frac{l^{2}\mu h}{4}(-w_{,xxx} -w_{,xyy} -\phi _{x,xx} -4\phi _{x,yy} +3\phi _{y,xy} )+\frac{1}{2}c_{y} =-m_{2} \ddot{{\phi }}_{x} , \nonumber \\ \end{aligned}$$
(B.3.8.4)
$$\begin{aligned}&\quad -\frac{h^{3}}{12}(\lambda +2\mu )\phi _{y,yy} -\frac{h^{3}}{12}\mu \phi _{y,xx} -\frac{h^{3}}{12}(\lambda +\mu )\phi _{x,xy} -k_{s}^{2} \mu h(w_{,y} -\phi _{y} )-\frac{l^{2}\mu h^{3}}{48}(\phi _{x,xxxy} +\phi _{x,xyyy} \nonumber \\&\quad -\phi _{y,xxxx} -\phi _{y,xxyy} )+\frac{l^{2}\mu h}{4}(-w_{,xxy} -w_{,yyy} +3\phi _{x,xy} -4\phi _{y,xx} -\phi _{y,yy} )-\frac{1}{2}c_{x} =-m_{2} \ddot{{\phi }}_{y} . \end{aligned}$$
(B.3.8.5)

These equations are identical to those derived in Gao and Zhang [12] using the same modified couple stress theory. Note that Eqs. (B.3.8.15) can be further simplified to the Mindlin plate based on classical elasticity (e.g., [27]) by suppressing the microstructure effect by setting \(l = 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y.L., Li, P., Zhang, G.Y. et al. A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory . Acta Mech 231, 4323–4350 (2020). https://doi.org/10.1007/s00707-020-02745-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02745-0

Navigation