Skip to main content
Log in

In-plane transient analysis of two dissimilar nonhomogeneous half-planes containing several interface cracks

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, the linear elastic fracture mechanics theory is employed to calculate the dynamic stress intensity factors (DSIFs) of multiple cracks which are located at the interface between two dissimilar nonhomogeneous half-planes subjected to in-plane impacts. The change in the material properties is illustrated by an exponential law. First, the integral transforms and Volterra-type climb and glide edge dislocation at the interface of two dissimilar nonhomogeneous materials are used to obtain the solution. Then, using the distributed displacement technique, singular integral equations with Cauchy singularity are obtained. By solving these equations numerically in the Laplace domain, the dislocation density on the crack faces used to determine the DSIFs is obtained. Finally, numerical results exhibited graphically the effects of the gradient nonhomogeneous constant, crack length, the variation of time and the interaction between of cracks on the DSIFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Miyamoto, Y.: The applications of functionally graded materials in Japan. Mater. Technol. 11, 230–236 (1996)

    Article  Google Scholar 

  2. Delale, F., Erdogan, F.: The crack problem for a nonhomogeneous plane. J. Appl. Mech. 50, 609–614 (1983)

    Article  Google Scholar 

  3. Erdogan, F.: Fracture mechanics of functionally graded materials. Compos. Eng. 5, 753–770 (1995)

    Article  Google Scholar 

  4. Lee, Y.-D., Erdogan, F.: Interface cracking of FGM coatings under steady- state heat flow. Eng. Fract. Mech. 59, 361–380 (1998)

    Article  Google Scholar 

  5. Shbeeb, N.I., Binienda, W.K.: Analysis of an interface crack for a functionally graded strip sandwiched between two homogeneous layers of finite thickness. Eng. Fract. Mech. 64, 693–720 (1999)

    Article  Google Scholar 

  6. Ozturk, M., Erdogan, F.: The mixed mode crack problem in an inhomogeneous orthotropic medium. Int. J. Fract. 98, 243–261 (1999)

    Article  Google Scholar 

  7. Delale, F., Erdogan, F.: Interface crack in a nonhomogenous elastic medium. Int. J. Eng. Sci. 26, 559–568 (1988)

    Article  Google Scholar 

  8. Erdogan, F., Kaya, A.C., Joseph, P.F.: The crack problem in bonded nonhomogeneous materials. J. Appl. Mech. 58, 410–418 (1991)

    Article  Google Scholar 

  9. Meguid, S.A., Wang, X.D.: On the dynamic interaction between a microdefect and a main crack. Proc. R. Soc. A Math. Phys. 448, 449–464 (1995)

    MATH  Google Scholar 

  10. Ikeda, T., Miyazaki, N., Soda, T.: Mixed mode fracture criterion of interface crack between dissimilar materials. Eng. Fract. Mech. 59, 725–735 (1998)

    Article  Google Scholar 

  11. Kadioğlu, S., Dag, S., Yahsi, S.: Crack problem for a functionally graded layer on an elastic foundation. Int. J. Fract. 94, 63–77 (1998)

    Article  Google Scholar 

  12. Zhou, Z.G., Bai, Y.Y., Zhang, X.W.: Two collinear Griffith cracks subjected to uniform tension in infinitely long strip. Int. J. Solids. Struct. 36, 5597–609 (1999)

    Article  Google Scholar 

  13. Moura, A.: Closed-form solution for Mode I crack acceleration. Int. J. Solids. Struct. 39, 2419–2434 (2002)

    Article  MathSciNet  Google Scholar 

  14. Brock, L.M., Hanson, M.T.: An exact transient analysis of plane wave diffraction by a crack in an orthotropic or transversely isotropic solid. Int. J. Solids. Struct. 39, 5393–5408 (2002)

    Article  Google Scholar 

  15. Baksi, A., Das, S., Bera, R.K.: Impact response of a cracked orthotropic medium-revisited. Int. J. Eng. Sci. 41, 2063–2079 (2003)

    Article  MathSciNet  Google Scholar 

  16. Dag, S., Yildirim, B., Erdogan, F.: Interface crack problems in graded orthotropic media: analytical and computational approaches. Int. J. Fract. 130, 471–496 (2004)

    Article  Google Scholar 

  17. Guo, L.C., Wu, L.Z., Zeng, T., Cao, D.: The transient response of a coating-substrate structure with a crack in the functionally graded interfacial layer. Compos. Struct. 70, 109–119 (2005)

    Article  Google Scholar 

  18. Guo, L.C., Wu, L.Z., Zeng, T.: The dynamic response of an edge crack in a functionally graded orthotropic strip. Mech. Res. Commun. 32, 385–400 (2005)

    Article  Google Scholar 

  19. Ueda, S.: Transient response of a center crack in a functionally graded piezoelectric strip under electromechanical impact. Eng. Fract. Mech. 73, 1455–1471 (2006)

    Article  Google Scholar 

  20. Das, S.: Elastodynamic response of a cracked orthotropic medium under impact loading. Comput. Mater. Sci. 37, 187–192 (2006)

    Article  Google Scholar 

  21. Guo, L.C., Noda, N.: Dynamic investigation of a functionally graded layered structure with a crack crossing the interface. Int. J. Solids. Struct. 45, 336–357 (2008)

    Article  Google Scholar 

  22. Itou, S.: Dynamic stress intensity factors around three parallel cracks in an infinite medium during a passage of impact normal stresses. Acta. Mech. 226, 2407–2420 (2015)

    Article  MathSciNet  Google Scholar 

  23. Ayatollahi, M., Bagheri, R.: Dynamic behavior of several cracks in functionally graded strip subjected to anti-plane time-harmonic concentrated loads. Acta. Mech. Solida. Sin. 26, 691–705 (2013)

    Article  Google Scholar 

  24. Bagheri, R., Noroozi, M.: The linear steady state analysis of multiple moving cracks in a piezoelectric half-plane under in-plane electro-elastic loading. Theor. Appl. Fract. Mech. 96, 334–350 (2018)

    Article  Google Scholar 

  25. Azizi, S., Bagheri, R.: Mixed mode transient analysis of functionally graded piezoelectric plane weakened by multiple cracks. Theor. Appl. Fract. Mech. 101, 127–140 (2019)

    Article  Google Scholar 

  26. Bagheri, R., Ayatollahi, M., Mirzaei, A.M., Monfared, M.M.: Multiple defects in a piezoelectric half-plane under electro-elastic in-plane loadings. Theor. Appl. Fract. Mech. 103, 102316 (2019)

    Article  Google Scholar 

  27. Monfared, M.M., Bagheri, R., Yaghoubi, R.: The mixed mode analysis of arbitrary configuration of cracks in an orthotropic FGM strip using the distributed edge dislocations. Int. J. Solids. Struct. 130, 21–35 (2018)

    Article  Google Scholar 

  28. Stehfest, H.: Algorithm 368: numerical inversion of Laplace transforms [D5]. Commun. ACM. 13, 47–9 (1970)

    Article  Google Scholar 

  29. Bueckner, H.: The propagation of cracks and the energy of elastic deformation. Trans. ASME Ser. E 80, 1225–30 (1958)

    Google Scholar 

  30. Baghestani, A.M., Fotuhi, A.R., Fariborz, S.J.: Multiple interacting cracks in an orthotropic layer. Arch. Appl. Mech. 83, 1549–1567 (2013)

    Article  Google Scholar 

  31. Sih, G., Embley, G., Ravera, R.: Impact response of a finite crack in plane extension. Int. J. Solids. Struct. 8, 977–993 (1972)

    Article  Google Scholar 

  32. Mottale, H., Monfared, M.M., Bagheri, R.: The multiple parallel cracks in an orthotropic non-homogeneous infinite plane subjected to transient in-plane loading. Eng. Fract. Mech. 199, 220–234 (2018)

    Article  Google Scholar 

  33. Monfared, M.M., Ayatollahi, M.: Multiple crack problems in nonhomogeneous orthotropic planes under mixed mode loading conditions. Eng. Fract. Mech. 155, 1–17 (2016)

    Article  Google Scholar 

  34. Chen, Y.F., Erdogan, F.: The interface crack problem for a nonhomogeneous coating bonded to a homogeneous substrate. J. Mech. Phys. Solids. 44, 771–787 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Islamic Azad University, Karaj Branch (Iran), for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bagheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The parameters appearing in Eq. (10) are

$$\begin{aligned} A_{11}= & {} {[a_{24} (-b_{33} b_{41} +b_{31} b_{43} )+a_{23} (b_{34} b_{41} -b_{31} b_{44} )+a_{21} (-b_{34} b_{43} +b_{33} b_{44} )]} / {\Delta ,} \\ A_{12}= & {} {[b_{34} (a_{23} -b_{43} )+a_{24} (-b_{33} +b_{43} )+b_{44} (-a_{23} +b_{33} )]} / {\Delta ,} \\ A_{21}= & {} {[a_{14} (b_{33} b_{41} -b_{31} b_{43} )+a_{13} (-b_{34} b_{41} +b_{31} b_{44} )+a_{11} (b_{34} b_{43} -b_{33} b_{44} )]} / {\Delta ,} \\ A_{22}= & {} {[a_{14} (b_{33} -b_{43} )+b_{34} (-a_{13} +b_{43} )+b_{44} (a_{13} -b_{33} )]} / {\Delta ,} \\ B_{31}= & {} {[a_{14} (a_{23} b_{41} -a_{21} b_{43} )+a_{13} (-a_{24} b_{41} +a_{21} b_{44} )+a_{11} (a_{24} b_{43} -a_{23} b_{44} )]} / {\Delta ,} \\ B_{32}= & {} {[a_{24} (-a_{13} +b_{43} )+a_{14} (a_{23} -b_{43} )+b_{44} (a_{13} -a_{23} )]} / {\Delta ,} \\ B_{41}= & {} {[a_{14} (-a_{23} b_{31} +a_{21} b_{33} )+a_{13} (a_{24} b_{31} -a_{21} b_{34} )+a_{11} (-a_{24} b_{33} +a_{23} b_{34} )]} / {\Delta ,} \\ B_{42}= & {} {[a_{24} (a_{13} -b_{33} )+a_{14} (-a_{23} +b_{33} )+b_{44} (-a_{13} +a_{23} )]} / {\Delta ,} \\ \Delta= & {} a_{11} a_{24} b_{33} -a_{11} a_{23} b_{34} -a_{24} b_{33} b_{41} +a_{23} b_{34} b_{41} -a_{11} a_{24} b_{43} +a_{24} b_{31} b_{43} +a_{11} b_{34} b_{43} -a_{21} b_{34} b_{43} \\&+ a_{14} [a_{23} (b_{31} -b_{41} )+b_{33} (-a_{21} +b_{41} )+b_{43} (a_{21} -b_{31} )]+b_{44} [a_{23} (a_{11} -b_{31} )+b_{33} (-a_{11} +a_{21} )] \\&+ a_{13} [b_{34} (a_{21} -b_{41} )+a_{24} (-b_{31} +b_{41} )+b_{44} (-a_{21} +b_{31} )]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, R., Monfared, M.M. In-plane transient analysis of two dissimilar nonhomogeneous half-planes containing several interface cracks. Acta Mech 231, 3779–3797 (2020). https://doi.org/10.1007/s00707-020-02722-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02722-7

Navigation