Skip to main content
Log in

On the spatial behavior of thermal signals in generalized thermoelasticity with memory-dependent derivative

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this article, a novel mathematical model is theoretically developed by incorporating a memory-dependent derivative (MDD) into the temperature-rate-dependent thermoelasticity theory (Green–Lindsay) on three mathematical aspects in order to study the spatial behavior of the thermal signals in an isotropic, homogeneous, thermoelastic continuum. Firstly, to ensure the thermodynamic consistency of the proposed model, the constitutive equations involving MDD are derived from the principle of thermodynamics or continuum mechanics in conjunction with the corresponding kinematic assumptions. Secondly, to prove the finite propagation speeds of the thermal signals of the proposed model, a domain of influence theorem is established. Finally, to analyze the spatial propagation of the thermal signals inside the domain of influence, a spatial decay theorem is established. As an immediate outcome of this theoretical analysis, a uniqueness theorem of the proposed model is also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Al-Jamel, A., Al-Jamal, M.F., El-Karamany, A.: A memory-dependent derivative model for damping in oscillatory systems. J. Vib. Control 24(11), 2221–2229 (2018)

    Article  MathSciNet  Google Scholar 

  2. Banerjee, S., Shaw, S., Mukhopadhyay, B.: Memory response on thermoelastic deformation in a solid half-space with a cylindrical hole. Mech. Based Des. Struc. (2019). https://doi.org/10.1080/15397734.2019.1686989

    Article  Google Scholar 

  3. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39, 355–376 (1986)

    Article  MATH  Google Scholar 

  5. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  Google Scholar 

  6. Chandrasekharaiah, D.S., Debnath, L.: Continuum Mechanics. Elsevier, Amsterdam (1994)

    MATH  Google Scholar 

  7. Chester, M.: Second sound in solids. Phys. Rev. 131(5), 2013–2015 (1963)

    Article  Google Scholar 

  8. Chiritǎ, S., Quintanilla, R.: On Saint-Venant’s principle in linear elastodynamics. J. Elast. 42(3), 201–215 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiriţǎ, S., Ciarletta, M.: Time-weighted surface power function method for the study of spatial behaviour in dynamics of continua. Eur. J. Mech. A Solid 18(5), 915–933 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chiriţǎ, S., Ciarletta, M., Fabrizio, M.: Saint Venant’s principle in linear viscoelasticity. Int. J. Eng. Sci. 35(12), 1221–1236 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choudhuri, S.K.R.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30(3), 231–238 (2007)

    Article  Google Scholar 

  12. El-Karamany, A.S., Ezzat, M.A.: Modified Fourier’s law with time-delay and kernel function: application in thermoelasticity. J. Therm. Stress. 38(7), 811–834 (2015)

    Article  Google Scholar 

  13. Ezzat, M., El-Karamany, A., El-Bary, A.: Generalized thermo-viscoelasticity with memory-dependent derivatives. Int. Mech. Sci. 89, 470–475 (2014)

    Article  Google Scholar 

  14. Ezzat, M.A., El-Karamany, A., El-Bary, A.: Modeling of memory-dependent derivative in generalized thermoelasticity. Eur. Phys. J. Plus 131(10), 372 (2016)

    Article  Google Scholar 

  15. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: On dual-phase-lag thermoelasticity theory with memory-dependent derivative. Mech. Adv. Mater. Struct. 24(11), 908–916 (2017)

    Article  Google Scholar 

  16. Green, A.E., Laws, N.: On the entropy production inequality. Arch. Ration. Mech. Anal. 45(1), 17–53 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  18. Green, A.E., Naghdi, P.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432, 171–194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15(2), 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  20. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Horgan, C.: Recent developments concerning Saint-Venant’s principle: a second update. Appl. Mech. Rev. 49(10), 101–111 (1996)

    Article  Google Scholar 

  22. Horgan, C.O.: Recent developments concerning Saint-Venant’s principle: an update. Appl. Mech. Rev. 42(11), 295–303 (1989)

    Article  MathSciNet  Google Scholar 

  23. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  24. Joseph, D.D., Preziosi, L.: Heat wave. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Joseph, D.D., Preziosi, L.: Addendum to the paper “heat waves”. Rev. Mod. Phys. 62, 375–391 (1990)

    Article  Google Scholar 

  26. Li, Y., He, T.: A generalized thermoelastic diffusion problem with memory-dependent derivative. Math. Mech. Solids 24(5), 1438–1462 (2019)

    Article  MathSciNet  Google Scholar 

  27. Li, Y., Zhang, P., Li, C., He, T.: Fractional order and memory-dependent analysis to the dynamic response of a bi-layered structure due to laser pulse heating. Int J. Heat Mass Transf. 144, 118664 (2019)

    Article  Google Scholar 

  28. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  29. Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. 157(3), 49–88 (1867)

    Google Scholar 

  30. Miranville, A., Quintanilla, R.: On the spatial behavior in two-temperature generalized thermoelastic theories. Z. Angew. Math. Phys. 68, 110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mondal, S., Pal, P., Kanoria, M.: Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 230, 179–199 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mondal, S., Sur, A.: Photo-thermo-elastic wave propagation in an orthotropic semiconductor with a spherical cavity and memory responses. Waves Random Complex Media (2020). https://doi.org/10.1080/17455030.2019.1705426

    Article  Google Scholar 

  33. Othman, M.I.A., Mondal, S.: Memory-dependent derivative effect on 2d problem of generalized thermoelastic rotating medium with Lord-Shulman model. Indian J. Phys. (2019). https://doi.org/10.1007/s12648-019-01548-x

    Article  Google Scholar 

  34. Sarkar, I., Mukhopadhyay, B.: A domain of influence theorem for generalized thermoelasticity with memory-dependent derivative. J. Therm. Stress. 42(11), 1447–1457 (2019)

    Article  Google Scholar 

  35. Sarkar, I., Mukhopadhyay, B.: On energy, uniqueness theorems and variational principle for generalized thermoelasticity with memory-dependent derivative. Int. J. Heat Mass Transf. 149, 119112 (2020)

    Article  Google Scholar 

  36. Sarkar, I., Mukhopadhyay, B.: Thermo-viscoelastic interaction under dual-phase-lag model with memory-dependent derivative. Waves Random Complex Media (2020). https://doi.org/10.1080/17455030.2020.1736733

    Article  Google Scholar 

  37. Sarkar, N., Othman, M.I.A.: Three-dimensional thermal shock problem in the frame of memory-dependent generalized thermoelasticity. Indian J. Phys. (2019). https://doi.org/10.1007/s12648-019-01664-8

    Article  Google Scholar 

  38. Shaw, S.: Theory of generalized thermoelasticity with memory-dependent derivatives. J. Eng. Mech. 145(3), 04019003 (2019)

    Article  Google Scholar 

  39. Shaw, S., Mukhopadhyay, B.: A discontinuity analysis of generalized thermoelasticity theory with memory-dependent derivatives. Acta Mech. 228(7), 2675–2689 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Singh, B., Sarkar, S.P., Barman, K.: Thermoelastic interaction in the semi-infinite solid medium due to three-phase-lag effect involving memory-dependent derivative. J. Therm. Stress. 42(7), 874–889 (2019)

    Article  Google Scholar 

  41. Sur, A.: Wave propagation analysis of porous asphalts on account of memory responses. Mech. Based Des. Struct. (2020). https://doi.org/10.1080/15397734.2020.1712553

    Article  Google Scholar 

  42. Tzou, D.Y.: A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)

    Article  Google Scholar 

  43. Wang, J.L., Li, H.F.: Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput. Math. Appl. 62(3), 1562–1567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, Y., Xu, Z.D., Guo, Y.Q., Dong, Y., Huang, X.: A generalized magneto-thermoviscoelastic problem of a single-layer plate for vibration control considering memory-dependent heat transfer and nonlocal effect. J. Heat Transf. 141(8), 082002 (2019)

    Article  Google Scholar 

  45. Yu, Y.J., Hu, W., Tian, X.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123–134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor and the Reviewers for their valuable comments and suggestions for the improvement of the quality of the article. This research work is financially supported by Council of Scientific and Industrial Research (CSIR), New Delhi, via Grant Number 08/003(0116)/2016-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, I., Mukhopadhyay, B. On the spatial behavior of thermal signals in generalized thermoelasticity with memory-dependent derivative. Acta Mech 231, 2989–3001 (2020). https://doi.org/10.1007/s00707-020-02687-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02687-7

Navigation