Skip to main content
Log in

On the spatial behavior in two-temperature generalized thermoelastic theories

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper investigates the spatial behavior of the solutions of two generalized thermoelastic theories with two temperatures. To be more precise, we focus on the Green–Lindsay theory with two temperatures and the Lord–Shulman theory with two temperatures. We prove that a Phragmén–Lindelöf alternative of exponential type can be obtained in both cases. We also describe how to obtain a bound on the amplitude term by means of the boundary conditions for the Green–Lindsay theory with two temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Awad, E.: A note on the spatial decay estimates in non-classical linear thermoelastic semi-cylindrical bounded domains. J. Therm. Stress. 34, 147–160 (2011)

    Article  Google Scholar 

  2. Banik, S., Kanoria, M.: Two-temperature generalized thermoelastic interactions in an infinite body with a spherical cavity. Int. J. Thermophys. 32, 1247–1270 (2011)

    Article  Google Scholar 

  3. Chen, P.J., Gurtin, M.E.: On a theory of heat involving two temperatures. J. Appl. Math. Phys. (ZAMP) 19, 614–627 (1968)

    Article  MATH  Google Scholar 

  4. Chen, P.J., Gurtin, M.E., Williams, W.O.: A note on non-simple heat conduction. J. Appl. Math. Phys. (ZAMP) 19, 969–970 (1968)

    Article  Google Scholar 

  5. Chen, P.J., Gurtin, M.E., Williams, W.O.: On the thermodynamics of non-simple materials with two temperatures. J. Appl. Math. Phys. (ZAMP) 20, 107–112 (1969)

    Article  MATH  Google Scholar 

  6. Chirita, S., Quintanilla, R.: Spatial decay estimates of Saint-Venant type in generalized thermoelasticity. Int. J. Eng. Sci. 34, 299–311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Díaz, J.I., Quintanilla, R.: Spatial and continuous dependence estimates in viscoelasticity. J. Math. Anal. Appl. 273, 1–16 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. El-Karamany, A.S., Ezzat, M.A.: On the two-temperature Green–Naghdi thermoelasticity theories. J. Therm. Stress. 34, 1207–1226 (2011)

    Article  Google Scholar 

  9. Flavin, J.N., Knops, R.J., Payne, L.E.: Decay estimates for the constrained elastic cylinder of variable cross-section. Q. Appl. Math. 47, 325–350 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Flavin, J.N., Knops, R.J., Payne, L.E.: Energy bounds in dynamical problems for a semi-infinite elastic beam. In: Eason, G., Ogden, R.W. (eds.) Elasticity: Mathematical Methods and Applications, pp. 101–111. Ellis Horwood, Chichester (1989)

    Google Scholar 

  11. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  12. Horgan, C.O.: Recent developments concerning Saint-Venant’s principle: a second update. Appl. Mech. Rev. 49, 101–111 (1996)

    Article  Google Scholar 

  13. Horgan, C.O., Payne, L.E., Wheeler, L.T.: Spatial decay estimates in transient heat conduction. Q. Appl. Math. 42, 119–127 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Horgan, C.O., Quintanilla, R.: Spatial decay of transient end effects in functionally graded heat conducting materials. Q. Appl. Math. 59, 529–542 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ieşan, D.: On the linear coupled thermoelasticity with two temperatures. J. Appl. Math. Phys. (ZAMP) 21, 383–391 (1970)

    MathSciNet  MATH  Google Scholar 

  16. Leseduarte, M.C., Quintanilla, R.: On the backward in time problem for the thermoelasticity with two temperatures. Discrete Contin. Dyn. Syst. Ser. B 19, 679–695 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leseduarte, M.C., Quintanilla, R., Racke, R.: On (non-)exponential decay in generalized thermoelasticity with two temperatures. Appl. Math. Lett. 70, 18–25 (2017)

  18. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoealsticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  19. Magaña, A., Quintanilla, R.: Uniqueness and growth of solutions in two-temperature generalized thermoelastic theories. Math. Mech. Solids 14, 622–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miranville, A., Quintanilla, R.: A generalization of the Caginalp phase-field system based on the Cattaneo law. Nonlinear Anal. TMA 71, 2278–2290 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miranville, A., Quintanilla, R.: Some generalizations of the Caginalp phase-field system. Appl. Anal. 88, 877–894 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miranville, A., Quintanilla, R.: A phase-field model based on a three-phase-lag heat conduction. Appl. Math. Optim. 63, 133–150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miranville, A., Quintanilla, R.: A type III phase-field system with a logarithmic potential. Appl. Math. Lett. 24, 1003–1008 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Miranville, A., Quintanilla, R.: Spatial decay for several phase-field models. J. Appl. Math. Mech. (ZAMM) 93, 801–810 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miranville, A., Quintanilla, R.: A generalization of the Allen–Cahn equation. IMA J. Appl. Math. 80, 410–430 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mukhopadhyay, S., Kumar, R.: Thermoelastic interactions on two temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity. J. Therm. Stress. 32, 341–360 (2009)

    Article  Google Scholar 

  27. Payne, L.E., Song, J.C.: Growth and decay in generalized thermoelasticity. Int. J. Eng. Sci. 40, 385–400 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Quintanilla, R.: Damping of end effects in a thermoelastic theory. Appl. Math. Lett. 14, 137–141 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Quintanilla, R.: On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mech. 168, 61–73 (2004)

    Article  MATH  Google Scholar 

  30. Quintanilla, R.: Exponential stability and uniqueness in thermoelasticity with two temperatures. Dyn. Contin. Discrete Impuls. Syst. A 11, 57–68 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Quintanilla, R.: A well-posed problem for the three-dual-phase-lag heat conduction. J. Therm. Stress. 32, 1270–1278 (2009)

    Article  Google Scholar 

  32. Warren, W.E., Chen, P.J.: Wave propagation in two temperatures theory of thermoelasticity. Acta Mech. 16, 83–117 (1973)

    Article  Google Scholar 

  33. Youssef, H.M.: Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71, 383–390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Quintanilla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranville, A., Quintanilla, R. On the spatial behavior in two-temperature generalized thermoelastic theories. Z. Angew. Math. Phys. 68, 110 (2017). https://doi.org/10.1007/s00033-017-0857-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0857-x

Keywords

Mathematics Subject Classification

Navigation