Skip to main content
Log in

An adaptive cellular automata approach with the use of radial basis functions for the simulation of elastic wave propagation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A physics-based adaptive approach constructed on cellular automata is proposed for the analysis of two-dimensional (2D) elastodynamic initial boundary value problems. Although any 2D cell may be used in this approach, because of easy construction of arbitrary geometry, triangular plane cells are used as primary reference. The analysis of the problem includes two principal parts. In the first part, after discretization of the problem domain, a physics-based configuration considering the conservation of mass and the balance of momentum is developed as reference for cellular automata used in the next step. In the second part, radial basis functions (RBFs) are employed for an adaptive solution. For this purpose, after analysing the problem based on an arbitrary coarse mesh in the first step as reference, the problem domain may be discretized by iterative schemes, where RBFs indicate the lack and redundancy of computational points of the domain, from which some computational points may be added or eliminated for the next analysis. This process may be repeated to get the most appropriate mesh with the most accurate results. The principle of causality is taken into account in the proposed method, meaning that the unexcited parts of the domain are not in the solution domain. Similarly, those parts of the domain where the wave has already passed from would be deducted from the solution domain. The results of the proposed approach are compared with numerical and analytical results available in the literature. The comparison illustrates very good agreements between the results of the proposed approach and the results of those already reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Eskandari-Ghadi, M., Pak, R.Y.S.: Elastodynamics and elastostatics by a unified method of potentials for \(\text{ x }_{\rm 3}\)-convex domains. J. Elasticity 92, 187–194 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Naeeni, M.R., Eskandari-Ghadi, M.: Analytical solution of the asymmetric transient wave in a transversely isotropic half-space due to both buried and surface impulses. Soil Dyn. Earthq. Eng. 81, 42–57 (2016)

    Article  Google Scholar 

  3. Emami, M., Eskandari-Ghadi, M.: Transient interior analytical solutions of Lamb’s problem. Math. Mech. Solids 24, 3485–3513 (2019)

    Article  MathSciNet  Google Scholar 

  4. De Miranda, S., Molari, L., Ubertini, F.: A consistent approach for mixed stress finite element formulations in linear elastodynamics. Comput. Methods in Appl. Mech. Eng. 197, 1376–1388 (2008)

    Article  MATH  Google Scholar 

  5. Ham, S., Bathe, K.J.: A finite element method enriched for wave propagation problems. Comput. Struct. 94, 1–12 (2012)

    Article  Google Scholar 

  6. Mirzajani, M., Khaji, N., Hori, M.: Stress wave propagation analysis in one-dimensional micropolar rods with variable cross-section using micropolar wave finite element method. Int. J. Appl. Mech. 10, 1850039 (2018)

    Article  Google Scholar 

  7. Mirzajani, M., Khaji, N., Hori, M.: Wave propagation analysis of micropolar elastic beams using a novel micropolar wave finite element method. Mech. Adv. Materials Struct. (2019). https://doi.org/10.1080/15376494.2019.1572844. (in press)

    Article  Google Scholar 

  8. Hamzehei Javaran, S., Khaji, N.: Dynamic analysis of plane elasticity with new complex Fourier radial basis functions in the dual reciprocity boundary element method. Appl. Math. Model. 38, 3641–3651 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hamzehei-Javaran, S., Khaji, N.: Complex Fourier element shape functions for analysis of 2D static and transient dynamic problems using dual reciprocity boundary element method. Eng. Anal. Bound. Elem. 95, 222–237 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hamzeh Javaran, S., Khaji, N., Moharrami, H.: A dual reciprocity BEM approach using new Fourier radial basis functions applied to 2D elastodynamic transient analysis. Eng. Anal. Bound. Elem. 35, 85–95 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamzeh Javaran, S., Khaji, N., Noorzad, A.: First kind Bessel function (J-Bessel) as radial basis function for plane dynamic analysis using dual reciprocity boundary element method. Acta Mech. 218, 247–258 (2011)

    Article  MATH  Google Scholar 

  12. Eskandari-Ghadi, M., Mehdizadeh, D., Morshedifard, A., Rahimian, M.: A family of exponentially-gradient elements for numerical computation of singular boundary value problems. Eng. Anal. Bound. Elem. 80, 184–198 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Komatitsch, D., Barnes, C., Tromp, J.: Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics 65, 1251–1260 (2000)

    Article  Google Scholar 

  14. Kudela, P., Zak, A., Krawczuk, M., Ostachowicz, W.: Modelling of wave propagation in composite plates using the time domain spectral element method. J. Sound Vib. 302, 728–745 (2007)

    Article  MATH  Google Scholar 

  15. Khaji, N., Habibi, M., Mirhashemian, P.: Modeling transient elastodynamic problems using spectral element method. Asian J. Civ. Eng. 10, 361–380 (2009)

    Google Scholar 

  16. Yang, Z.J., Deeks, A.J.: A frequency-domain approach for modelling transient elastodynamics using scaled boundary finite element method. Comput. Mech. 40, 725–738 (2007)

    Article  MATH  Google Scholar 

  17. Song, C.: The scaled boundary finite element method in structural dynamics. Int. J. Numer. Methods Eng. 77, 1139–1171 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khodakarami, M.I., Khaji, N., Ahmadi, M.T.: Modeling transient elastodynamic problems using a novel semi-analytical method yielding decoupled partial differential equations. Comput. Methods Appl. Mech. Eng. 213, 183–195 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khaji, N., Mirzajani, M.: Frequency domain analysis of elastic bounded domains using a new semi-analytical method. Acta Mech. 224, 1555–1570 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khodakarami, M.I., Khaji, N.: Wave propagation in semi-infinite media with topographical irregularities using decoupled equations method. Soil Dyn. Earthq. Eng. 65, 102–112 (2014)

    Article  Google Scholar 

  21. Mirzajani, M., Khaji, N., Khodakarami, M.I.: A new global nonreflecting boundary condition with diagonal coefficient matrices for analysis of unbounded media. Appl. Math. Model. 40, 2845–2874 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zakian, P., Khaji, N.: A novel stochastic-spectral finite element method for analysis of elastodynamic problems in the time domain. Meccanica 51, 893–920 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zakian, P., Khaji, N.: A stochastic spectral finite element method for wave propagation analyses with medium uncertainties. Appl. Math. Model. 63, 84–108 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zakian, P., Khaji, N.: A stochastic spectral finite element method for solution of faulting-induced wave propagation in materially random continua without explicitly modeled discontinuities. Comput. Mech. 64, 1017–1048 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. von Neumann, J.: Theory of Self-reproducing Automata. University of Illinois Press, Urbana (1966)

    Google Scholar 

  26. Succi, S., Foti, E., Gramignani, M.: Flow through geometrically irregular media with lattice gas automata. Meccanica 25, 253–257 (1990)

    Article  Google Scholar 

  27. Rothman, D.H.: Modeling seismic P-waves with cellular automata. Geophys. Res. Lett. 14, 17–20 (1987)

    Article  Google Scholar 

  28. Chopard, B., Droz, M., Kolb, M.: Cellular automata approach to non-equilibrium diffusion and gradient percolation. J. Phys. A 22, 1609–1619 (1989)

    Article  MathSciNet  Google Scholar 

  29. Chopard, B.: A cellular automata model of large-scale moving objects. J. Phys. A. 23, 1671–1687 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schreckenburg, M., Schadschneider, A., Nagel, K., Ito, N.: Discrete stochastic models for traffic flow. Phys. Rev. E 51, 2939–2949 (1995)

    Article  Google Scholar 

  31. Yan, F., Feng, X.T., Pan, P.Z., Li, S.J.: Discontinuous cellular automaton method for crack growth analysis without remeshing. Appl. Math. Model. 38, 291–307 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yan, F., Pan, P.Z., Feng, X.T., Lv, J.H., Li, S.J.: An adaptive cellular updating scheme for the continuous–discontinuous cellular automaton method. Appl. Math. Model. 46, 1–15 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sangi, D., Steck, E.A., Bross, S.: Simulation of self-organized dislocation structures in f.c.c. and b.c.c. single crystals. Acta Mech. 132, 93–112 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kawamura, S., Yoshida, T., Minamoto, H., Hossain, Z.: Simulation of the nonlinear vibration of a string using the cellular automata based on the reflection rule. Appl. Acoust. 67, 93–105 (2006)

    Article  Google Scholar 

  35. Leamy, M.J.: Application of cellular automata modeling to seismic elastodynamics. Int. J. Solids Struct. 45, 4835–4849 (2008)

    Article  MATH  Google Scholar 

  36. Hopman, R.K., Leamy, M.J.: Triangular cellular automata for computing two-dimensional elastodynamic response on arbitrary domains. J. Appl. Mech. 78, 1115–1132 (2011)

    Article  Google Scholar 

  37. Shafiei, M., Khaji, N.: An adaptive physics-based method for the solution of one-dimensional wave motion problems. Civ. Eng. Infrastruct. J. 48, 217–234 (2015)

    Google Scholar 

  38. Shafiei, M., Khaji, N.: Simulation of two-dimensional elastodynamic problems using a new adaptive physics-based method. Meccanica 49, 1353–1366 (2014)

    Article  MATH  Google Scholar 

  39. Kawamura, S., Shirashige, M., Iwatsubo, T.: Simulation of the nonlinear vibration of a string using the cellular automation method. Appl. Acoust. 66, 77–87 (2005)

    Article  Google Scholar 

  40. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76, 1905–1915 (1971)

    Article  Google Scholar 

  41. Courant, R., Friedrichs, K., Lewy, H.: About the partial differential equations of mathematical physics. Math. Ann. 100, 32–74 (1928)

    Article  MathSciNet  Google Scholar 

  42. Khaji, N., Noureini, H.Kazemi: Detection of a through-thickness crack based on elastic wave scattering in plates, Part I forward solution, Asian. J. Civ. Eng. 13, 301–318 (2012)

    Google Scholar 

  43. Zak, A., Krawczuk, M., Ostachowicz, W.: Propagation of in-plane waves in an isotropic panel with a crack. Finite Elem. Anal. Des. 42, 929–941 (2006)

    Article  Google Scholar 

  44. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66, 51–83 (1978)

    Article  Google Scholar 

  45. Zakian, V.: Numerical inversion of Laplace transform. Electron. Lett. 5, 120–121 (1969)

    Article  MathSciNet  Google Scholar 

  46. Zakian, V., Edwards, M.J.: Tabulation of constants for full grade IMN approximants. Math. Comput. 32, 519–531 (1978)

    MATH  Google Scholar 

  47. Loureiro, F.S., Mansur, W.J.: An efficient hybrid time-Laplace domain method for elastodynamic analysis based on the explicit Green’s approach. Int. J. Solids Struct. 46, 3093–3102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rashed, Y.F.: BEM for dynamic analysis using compact supported radial basis functions. Comput. Struct. 80, 1351–1367 (2002)

    Article  MathSciNet  Google Scholar 

  49. Soares, D.J., Mansur, W.J.: An efficient stabilized boundary element formulation for 2D time-domain acoustics and elastodynamics. Comput. Mech. 49, 355–365 (2007)

    Article  MATH  Google Scholar 

  50. Hamzeh Javaran, S.: New complex Fourier basis functions in boundary element methods. Ph.D. dissertation, Fac. Civ. Env. Eng., Tarbiat Modares University, Tehran, Iran (2013)

  51. De-Hoop, A.T.: A modification of Cagniard’s method for solving seismic pulse problems. Appl. Sci. Res. B. 8, 349–356 (1960)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Khaji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiei, M., Khaji, N. & Eskandari-Ghadi, M. An adaptive cellular automata approach with the use of radial basis functions for the simulation of elastic wave propagation. Acta Mech 231, 2723–2740 (2020). https://doi.org/10.1007/s00707-020-02669-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02669-9

Navigation