Skip to main content
Log in

A frequency-domain approach for modelling transient elastodynamics using scaled boundary finite element method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This study develops a frequency-domain method for modelling general transient linear-elastic dynamic problems using the semi-analytical scaled boundary finite element method (SBFEM). This approach first uses the newly-developed analytical Frobenius solution to the governing equilibrium equation system in the frequency domain to calculate complex frequency-response functions (CFRFs). This is followed by a fast Fourier transform (FFT) of the transient load and a subsequent inverse FFT of the CFRFs to obtain time histories of structural responses. A set of wave propagation and structural dynamics problems, subjected to various load forms such as Heaviside step load, triangular blast load and ramped wind load, are modelled using the new approach. Due to the semi-analytical nature of the SBFEM, each problem is successfully modelled using a very small number of degrees of freedom. The numerical results agree very well with the analytical solutions and the results from detailed finite element analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zienkiewicz OC, Taylor RL (2000) The finite element method. 5th edn. Butterworth–Heinemann, London

    MATH  Google Scholar 

  2. Dokainish MA, Subbaraj K (1989) A survey of direct time-integration methods in computational structural dynamics—I. Explicit methods. Comput Struct 32(6):13711–1386

    Google Scholar 

  3. Subbaraj K, Dokainish MA (1989) A survey of direct time-integration methods in computational structural dynamics—II. Implicit methods. Comput Struct 32(6):1387–1401

    Article  MATH  MathSciNet  Google Scholar 

  4. Murti V, Valliappan S (1986) The use of quarter point element in dynamic crack analysis. Eng Fract Mech 23(3):585–614

    Article  Google Scholar 

  5. Wiberg NE, Zeng LF, Li XD (1992) Error estimation and mesh adaptivity for elastodynamics. Comput Methods Appl Mech Eng 101:369–395

    Article  MATH  MathSciNet  Google Scholar 

  6. Zeng LF, Wiberg NE (1992) Spatial mesh adaptation in semidiscrete finite element analysis of linear elastodynamics problems. Comput Mech 9:315–332

    Article  MATH  MathSciNet  Google Scholar 

  7. Carrer JAM, Mansur WJ (2004) Alternative time-marching schemes for elastodynamic analysis with the domain boundary element method formulation. Comput Mech 34(5):387–399

    Article  MATH  Google Scholar 

  8. Carrer JAM, Mansur WJ (2000) Time discontinuous linear traction approximation in time-domain BEM: 2-D elastodynamics. Int J Numer Methods Eng 49(6):833–848

    Article  MATH  MathSciNet  Google Scholar 

  9. Wang CC, Wang HC, Liou GS (1997) Quadratic time domain BEM formulation for 2D elastodynamic transient analysis. Int J Solids Struct 34(1):129–151

    Article  MATH  Google Scholar 

  10. Tanaka M, Chen W (2001) Dual reciprocity BEM applied to transient elastodynamic problems with differential quadrature method in time. Comput Methods Appl Mech Eng 190(18–19):2331–2347

    Article  MATH  Google Scholar 

  11. Yu GY, Mansur WJ, Carrer JAM (2001) A more stable scheme for BEM/FEM coupling applied to two-dimensional elastodynamics. Comput Struct 79(8):811–823

    Article  Google Scholar 

  12. Chien CC, Wu TY (2001) A particular integral BEM/time-discontinuous FEM methodology for solving 2-D elastodynamic problems. Int J Solids Struct 38(2):289–306

    Article  MATH  MathSciNet  Google Scholar 

  13. Sladek J, Sladek V, Van Keer R (2003) Meshless local boundary integral equation method for 2D elastodynamic problems. Int J Numer Methods Eng 57(2):235–249

    Article  MATH  Google Scholar 

  14. Gu YT, Liu GR (2001) A meshless local Petrov–Galerkin (MLPG) method for free and forced vibration analyses for solids. Comput Mech 27: 188–198

    Article  MATH  Google Scholar 

  15. Batra RC, Porfiri M, Spinello D (2006) Free and forced vibrations of a segmented bar by a meshless local Petrov–Galerkin (MLPG) formulation. Comput Mech published online. DOI: 10.1007/s00466-006-0049-6

  16. Wolf JP, Song CM (1996) Finite-element modelling of unbounded media. Wiley Chichester

  17. Wolf JP (2003) The scaled boundary finite element method. Wiley Chichester

  18. Zhang X, Wegner JL, Haddow JB (1999) Three-dimensional dynamic soil-structure interaction analysis in the time domain. Earthquake Eng Struct Dyn 28(12):1501–1524

    Article  Google Scholar 

  19. Yan JY, Zhang CH, Jin F (2004) A coupling procedure of FE and SBFE for soil-structure interaction in the time domain. Int J Numer Methods Eng 59(11):1453–1471

    Article  MATH  Google Scholar 

  20. Ekevid T, Wiberg NE (2002) Wave propagation related to high-speed train - a scaled boundary FE-approach for unbounded domains. Comput Methods Appl Mech Eng 191(36):3947–3964

    Article  MATH  Google Scholar 

  21. Genes MC, Kocak S (2005) Dynamic soil-structure interaction analysis of layered unbounded media via a coupled element/boundary element/scaled boundary finite element model. Int J Numer Methods Eng 62(6):798–823

    Article  MATH  Google Scholar 

  22. Song CM (2004) A super-element for crack analysis in the time domain. Int J Numer Methods Eng 61(8):1332–1357

    Article  MATH  Google Scholar 

  23. Spyrakos CC, Beskos DE (1982) Dynamic response of frameworks by fast Fourier transform. Comput Struct 15(5): 495–505

    Article  MATH  Google Scholar 

  24. Polyzos D, Tsepoura KG, Beskos DE (2005) Transient dynamic analysis of 3-D gradient elastic solids by BEM. Comput Struct 83(10–11):783–792

    Article  Google Scholar 

  25. Song CM, Wolf JP (1998) The scaled boundary finite-element method: analytical solution in frequency domain. Comput Methods Appl Mech Eng 164(1–2):249–264

    Article  MATH  MathSciNet  Google Scholar 

  26. Yang ZJ, Deeks AJ, Hao H (2006) A Frobenius solution to the scaled boundary finite element equations in frequency domain. Int J Numer Methods Eng (in press). DOI 10.1002/nme.1926

  27. Yang ZJ (2006) Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method. Eng Fracture Mech (in press) 73(12):1711–1731

    Article  Google Scholar 

  28. Deeks AJ (2004) Prescribed side-face displacements in the scaled boundary finite-element method. Comput Struct 82(15–16):1153–1165

    Article  Google Scholar 

  29. Deeks AJ, Wolf JP (2002) A virtual work derivation of the scaled boundary finite-element method for elastostatics. Comput Mech 28(6):489–504

    Article  MATH  MathSciNet  Google Scholar 

  30. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Article  MATH  MathSciNet  Google Scholar 

  31. MATLAB V7.1. The MathWorks, Inc, 2005

  32. Hibbitt, Karlsson and Sorensen Inc. ABAQUS/Standard User Manual V6.5, 2004

  33. Timoshenko S, Young DH, Weaver W (1974) Vibration problems in engineering 4th edn. Wiley, New York

    Google Scholar 

  34. Zienkiewicz OC, Li XK, Nakazawa S (1986) Dynamic transient analysis by a mixed, iterative method. Int J Numer Methods Eng 23(7):1343–1353

    Article  MATH  Google Scholar 

  35. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method. J Appl Mech-Trans ASME 60:371–375

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. J. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z.J., Deeks, A.J. A frequency-domain approach for modelling transient elastodynamics using scaled boundary finite element method. Comput Mech 40, 725–738 (2007). https://doi.org/10.1007/s00466-006-0135-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0135-9

Keywords

Navigation