Skip to main content
Log in

Nonlinear supersonic indicial response of diamond airfoils

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Supersonic flows around diamond airfoils, under large-amplitude step motion, are analytically studied. Nine regions with distinct flow structures are identified on each side. These regions include intricate wave structures and significantly shape the indicial response. The novelty of this work is to develop theoretical models, capable of describing each region’s wave speed, pressure, and force. We achieve this by correcting the linear solution to the problem and incorporating nonlinear effects of large angle and airfoil thickness. Our model reports good accuracy regarding the computational fluid dynamics. And three stages, which are predicted by this model, precisely capture important features of aerodynamic force evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Bisplinghoff, R.L., Ashley, H., Halfman, R.L.: Aeroelasticity, pp. 294–375. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  2. Mastroddi, F., Stella, F., Cantiani, D., Vetrano, F.: Linearized aeroelastic gust response analysis of a launch vehicle. J. Spacecr. Rockets 48(3), 420–432 (2011)

    Article  Google Scholar 

  3. Biot, M.A.: Loads on a supersonic wing striking a sharp-edged gust. J. Aeronaut. Sci. 16(5), 296–300 (1949)

    Article  Google Scholar 

  4. Hernandes, F., Soviero, P.A.D.O.: A numerical model for thin airfoils in unsteady compressible arbitrary motion. J. Braz. Soc. Mech. Sci. Eng. 29(3), 253–261 (2007)

    Article  Google Scholar 

  5. Choi, S.W., Chang, K.S.: Navier-Stokes computation of a rapidly deploying spoiler. J. Aircr. 37(4), 655–661 (2000)

    Article  Google Scholar 

  6. Tobak, M., Chapman, G.T., Schiff, L.B.: Mathematical modeling of the aerodynamic characteristics in flight dynamics. In: Proceedings of the Berkeley-Ames Conference on Nonlinear Problems in Control and Fluid Dynamics, vol. 2 (1984)

  7. Heaslet, M.A., Lomax, H.: Two-dimensional unsteady lift problems in supersonic flight. National Aeronautics and Space Administration Moffett Field CA Ames Research Center (1948)

  8. Lomax, H., Heaslet, M.A., Fuller, F.B., Sluder, L.: Two-and three-dimensional unsteady lift problems in high-speed flight. Technical Report Archive & Image Library (1952)

  9. Jaworski, J.W., Dowell, E.H.: Supersonic indicial lift functions from transform methods. AIAA J. 45(8), 2106–2111 (2007)

    Article  Google Scholar 

  10. Bai, C.Y., Wu, Z.N.: Supersonic indicial response with nonlinear corrections by shock and rarefaction waves. AIAA J. 55(3), 883–893 (2016)

    Article  Google Scholar 

  11. Bai, C.Y., Wu, Z.N.: Hybrid Riemann/self-similar flow structure by steady-and unsteady-wave interaction. AIAA J. 55(12), 4193–4202 (2017)

    Article  Google Scholar 

  12. Bai, C.Y., Li, S., Wu, Z.N.: Supersonic starting flow by accelerated sinking movement to large angle of attack. AIAA J. 57(5), 1988–2000 (2019)

    Article  Google Scholar 

  13. Bai, C.Y., Li, S., Wu, Z.N.: Unsteady supersonic flow for a plate undergoing three-stage sinking motion. AIAA J. 58(1), 1–12 (2019)

    Google Scholar 

  14. Chavez, F.R., Liu, D.D.: Unsteady unified hypersonic/supersonic method for aeroelastic applications including wave/shock interaction. AIAA J. 33(6), 1090–1097 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Chinese Postdoc Foundation (No. 2018M640119), by the Natural National Science Foundation of China (No. 11802157), and by Tsinghua Postdoc supporting program. We deeply appreciate Editor and Referees, for their valuable suggestions help improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Solutions to the uniform regions in the nonlinear situation

Appendix: Solutions to the uniform regions in the nonlinear situation

1. Oblique shock wave Using oblique shock relation, we can get

$$\begin{aligned} \left\{ \begin{array}{l} \tan \alpha _{d}=2\cot \beta \frac{M_{A}^{2}\sin ^{2}\beta -1}{ M_{A}^{2}\left( \gamma +\cos 2\beta \right) +2} \\ \rho _{B}=\rho _{A}\frac{\left( \gamma +1\right) M_{A}^{2}\sin ^{2}\beta }{ 2+\left( \gamma -1\right) M_{A}^{2}\sin ^{2}\beta } \\ \left( M_{B}\right) ^{2}=\frac{M_{A}^{2}+\frac{2}{\gamma -1}}{\frac{2\gamma }{\gamma -1}M_{A}^{2}\sin ^{2}\beta -1}+\frac{M_{A}^{2}\cos ^{2}\beta }{ \frac{\gamma -1}{2}M_{A}^{2}\sin ^{2}\beta +1} \\ u_{B}=M_{B}\times a_{B}\text {, }a_{B}=\sqrt{\frac{\gamma p_{B}}{\rho _{B}}} \\ p_{B}=p_{A}\left( 1+\frac{2\gamma }{\gamma +1}\left( M_{A}^{2}\sin ^{2}\beta -1\right) \right) \\ Cp_{B}=\frac{2}{\gamma M_{\infty }^{2}}\left( \frac{p_{A}}{p_{\infty }} \left( 1+\frac{2\gamma }{\gamma +1}\left( M_{A}^{2}\sin ^{2}\beta -1\right) \right) -1\right) . \end{array} \right. . \end{aligned}$$
(A.1)

Here \(\beta \) is the shock angle with respect to \(\alpha _{d}\) and \(M_{\infty }\).

2. Unsteady normal shock wave We use \(M_{S}\) to denote the Mach number of the shock wave. In the step motion, behind unsteady waves are airfoil surfaces. Thus, with \(v_{B,n}=0\), the classical solution gives:

$$\begin{aligned} \left\{ \begin{array}{l} M_{S}=\frac{\gamma +1}{4}M_{A}\sin \alpha _{r} +\sqrt{1+\left( \frac{\gamma +1 }{4}M_{A}\sin \alpha _{r} \right) ^{2}} \\ \rho _{B}=\rho _{A}\frac{M_{S}^{2}}{1+\frac{\gamma -1}{\gamma +1}\left( M_{S}^{2}-1\right) } \\ u_{B}=u_{A} \cos \alpha _{r} \text {, }ra_{B}=\sqrt{\frac{\gamma p_{B}}{ \rho _{B}}} \\ p_{B}=p_{\infty } \left( 1+\frac{2\gamma }{\gamma +1}\left( M_{S}^{2}-1 \right) \right) \\ Cp_{B}=\frac{2}{\gamma M_{\infty }^{2}}\left( \frac{p_{A}}{p_{\infty }} \left( 1+\frac{\gamma \left( \gamma +1\right) }{4}M_{A}^{2}\sin ^{2}\alpha _{r}+\gamma \sqrt{M_{A}^{2}\sin ^{2}\alpha _{d}+\left( \frac{\gamma +1}{4} M_{A}^{2}\sin ^{2}\alpha _{d}\right) ^{2}}\right) -1 \right) . \end{array} \right. . \end{aligned}$$
(A.2)

3. Prandtl–Meyer wave Prandtl–Meyer relations give:

$$\begin{aligned} \left\{ \begin{array}{l} \nu (M_{B})-\nu (M_{A})=\alpha _{d} \\ \nu (M)=\sqrt{\frac{\gamma +1}{\gamma -1}}\arctan \left( \sqrt{\frac{\gamma -1}{\gamma +1}}\sqrt{M^{2}-1}\right) -\arctan \sqrt{M^{2}-1} \\ u_{B}=M_{B}\times a_{B}\text {, }a_{B}=\sqrt{\frac{\gamma p_{B}}{\rho _{B}}} \\ \rho _{B}=\rho _{A}\left( \frac{1+\frac{1}{2}\left( \gamma -1\right) M_{A}^{2}}{1+\frac{1}{2}\left( \gamma -1\right) M_{B}^{2}}\right) ^{\frac{1}{ \gamma -1}} \\ p_{B}=p_{A}\left( \frac{1+\frac{1}{2}\left( \gamma -1\right) M_{A}^{2}}{1+ \frac{1}{2}\left( \gamma -1\right) M_{B}^{2}}\right) ^{\frac{\gamma }{\gamma -1}}\ \\ C_{p}=\frac{2\gamma }{M_{\infty }^{2}}\left( \frac{p_{A}}{p_{\infty }}\left( \frac{1+\frac{1}{2}\left( \gamma -1\right) M_{A}^{2}}{1+\frac{1}{2}\left( \gamma -1\right) M_{B}^{2}}\right) ^{\frac{\gamma }{\gamma -1}}-1\right) . \end{array} \right. \end{aligned}$$
(A.3)

4. Unsteady rarefaction wave Considering \(v_{B,n}=0\), the solution is given by isentropic relation:

$$\begin{aligned} \left\{ \begin{array}{l} a_{B}=a_{A}-\frac{\gamma -1}{2}V_{A}\sin \alpha _{d} \\ \rho _{B}=\rho _{A}\left( 1-\frac{\gamma -1}{2}M_{A}\sin \alpha _{d}\right) ^{\frac{2}{\gamma -1}} \\ p_{B}=p_{A}\left( 1-\frac{\gamma -1}{2}M_{A}\sin \alpha _{d}\right) ^{\frac{ 2\gamma }{\gamma -1}} \\ C_{p}=\frac{2}{\gamma M_{\infty }^{2}}\left( \frac{p_{A}}{p_{\infty }}\left( 1-\frac{\gamma -1}{2}M_{A}\sin \alpha _{d}\right) ^{\frac{2\gamma }{\gamma -1 }}-1\right) . \end{array} \right. . \end{aligned}$$
(A.4)

For plates, the flow structure and flow parameters are given by Table 7. For any uniform region of the flat plate, one can obtain its solution by taking upstream flow parameters into the corresponding nonlinear wave relation.

Table 7 Flat plate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Bai, CY. & Wu, ZN. Nonlinear supersonic indicial response of diamond airfoils. Acta Mech 231, 2125–2141 (2020). https://doi.org/10.1007/s00707-020-02637-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02637-3

Navigation