Skip to main content
Log in

Theoretical analysis of the mechanical behavior in Li–ion battery cylindrical electrodes with phase transformation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Diffusion-induced stress caused by the insertion and extraction of lithium ions can result in the swelling, fracture, and even pulverization of the battery electrodes. However, only a few previous studies consider the phenomenon of phase transformation in an electrode and rarely take the impacts of cylindrical shape with transversely isotropic properties into account. In this paper, by researching the electronic reaction and diffusion process, a new theoretical model is established to study the stress level and mechanical behavior in cylindrical electrodes with phase transformation under galvanostatic operation. From the model, the brittle center and edge cracks are analyzed to investigate the influence of the initiation position on crack propagation. The tangential stress plays an important role in cracking on the electrodes. Furthermore, it is found for the center crack that it tends to grow more easily in the first insertion when the crack locates at the phase interface position, while for the edge crack, it tends to grow more easily in the early stage of lithium ion extraction. Moreover, manufacturing the electrodes with the appropriate property ratios, the diffusion-induced stress level and brittle crack-induced stress intensity factor value may decrease, and the electrode fracture phenomenon could be alleviated to some degree. Overall, our work provides a theoretical basis for the electrode phase transformation and cracking when the battery is working, and it may help us understand more about the internal mechanical behavior of the battery electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lyu, D., Ren, B., Li, S.: Failure modes and mechanisms for rechargeable Lithium-based batteries: a state-of-the-art review. Acta. Mech. (2019). https://doi.org/10.1007/s00707-018-2327-8

    Article  Google Scholar 

  2. Drozdov, A.D.: A model for the mechanical response of electrode particles induced by lithium diffusion in Li-ion batteries. Acta. Mech. (2014). https://doi.org/10.1007/s00707-014-1096-2

    Article  MathSciNet  Google Scholar 

  3. Chen, B., Zhou, J., Pang, X., Wei, P., Yunbo, W., Deng, K.: Fracture damage of nanowire lithium-ion battery electrode affected by diffusion-induced stress and bending during lithiation. RSC Adv. (2014). https://doi.org/10.1039/c4ra01724b

    Article  Google Scholar 

  4. Zhang, Y.: Simulation of crack behavior of secondary particles in Li-ion battery electrodes during lithiation/de-lithiation cycles. Int. J. Mech. Sci. (2019). https://doi.org/10.1016/j.ijmecsci.2019.02.042

    Article  Google Scholar 

  5. Chengjun, X., Weng, L., Ji, L., Zhou, J.: An analytical model for the fracture behavior of the flexible lithium-ion batteries under bending deformation. Eur. J. Mech. A-Solids (2019). https://doi.org/10.1016/j.euromechsol.2018.06.012

    Article  MathSciNet  Google Scholar 

  6. Hui, W., Xie, Z., Wang, Y., Chunsheng, L., Ma, Z.: Modeling diffusion-induced stress on two-phase lithiation in lithium-ion batteries. Eur. J. Mech. A-Solids (2018). https://doi.org/10.1016/j.euromechsol.2018.04.005

    Article  MathSciNet  Google Scholar 

  7. Hanzhong, X., Yulan, L., Wang, B.: Mechano-electrochemical and buckling analysis of composition-gradient nanowires electrodes in lithium-ion battery. Acta. Mech. (2019). https://doi.org/10.1007/s00707-019-02486-9

    Article  MathSciNet  Google Scholar 

  8. Weng, L., Zhou, J., Cai, R.: Analytical model of Li-ion diffusion-induced stress in nanowire and negative Poisson’s ratio electrode under different operations. Int. J. Mech. Sci. (2018). https://doi.org/10.1016/j.ijmecsci.2018.04.013

    Article  Google Scholar 

  9. Chengjun, X., Weng, L., Chen, B., Zhou, J., Cai, R.: An analytical model for the fracture behavior in hollow cylindrical anodes. Int. J. Mech. Sci. (2019). https://doi.org/10.1016/j.ijmecsci.2019.04.035

    Article  Google Scholar 

  10. Yuyang, L., Ai, K.S., Yong, N., Linghui, H.: Understanding size-dependent migration of a two-phase lithiation front coupled to stress. Acta. Mech. (2019). https://doi.org/10.1007/s00707-018-2303-3

    Article  MathSciNet  Google Scholar 

  11. Salvadori, A., Grazioli, D., Geers, M.G.D.: Governing equations for a two-scale analysis of Li-ion battery cells. Int. J. Solids Struct. (2015). https://doi.org/10.1016/j.ijsolstr.2015.01.014

    Article  Google Scholar 

  12. Ovejas, V.J., Cuadras, A.: State of charge dependency of the overvoltage generated in commercial Liion cells. J. Power Sour. (2019). https://doi.org/10.1016/j.jpowsour.2019.02.046

    Article  Google Scholar 

  13. Linda, Y., Lim, N., Liu, Y., Cui, M.F. Toney: understanding phase transformation in crystalline ge anodes for li-ion batteries. Chem. Mater. (2014). https://doi.org/10.1021/cm501233k

    Article  Google Scholar 

  14. Deshpande, R., Cheng, Y.T., Verbrugge, M.W., Timmons, A.: Diffusion-induced stresses and strain energy in a phase-transforming spherical electrode particle. J. Electrochem. Soc. (2011). https://doi.org/10.1149/1.3565183

    Article  Google Scholar 

  15. Chen, B., Zhou, J., Cai, R.: Analytical model for crack propagation in spherical nano electrodes of lithium-ion batteries. Electrochim. Acta (2016). https://doi.org/10.1016/j.electacta.2016.05.136

    Article  Google Scholar 

  16. Esmizadeh, S., Haftbaradaran, H., Mossaiby, F.: An investigation of the critical conditions leading to deintercalation induced fracture in two-phase elastic electrode particles using a moving interphase core-shell model. Eur. J. Mech. A-Solids (2019). https://doi.org/10.1016/j.euromechsol.2018.10.019

    Article  MathSciNet  Google Scholar 

  17. Haftbaradaran, H., Maddahian, A., Mossaiby, F.: A fracture mechanics study of the phase separating planar electrodes: Phase field modeling and analytical results. J. Power Sour. (2017). https://doi.org/10.1016/j.jpowsour.2017.03.073

    Article  Google Scholar 

  18. Woodford, W.H., Chiang, Y.-M., Carter, W.C.: “Electrochemical Shock” of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. (2010). https://doi.org/10.1149/1.3464773

    Article  Google Scholar 

  19. Cheng, G., Zhang, Y., Chang, T.-H., Liu, Q., Chen, L., Lu, W.D., Zhu, T., Zhu, Y.: In situ nano-thermomechanical experiment reveals brittle to ductile transition in silicon nanowires. Nano Lett. (2019). https://doi.org/10.1021/acs.nanolett.9b01789

    Article  Google Scholar 

  20. Zhang, X.Y., Hao, F., Chen, H.-S., Fang, D.-N.: Diffusion-induced stresses in transversely isotropic cylindrical electrodes of lithium-ion batteries. J. Electrochem. Soc. (2014). https://doi.org/10.1149/2.0991414jes

    Article  Google Scholar 

  21. Shen, L., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B (2004). https://doi.org/10.1103/PhysRevB.69.045414

  22. Li, J., Fang, Q., Liu, F., Liu, Y.: Analytical modeling of dislocation effect on diffusion-induced stress in a cylindrical lithium ion battery electrode. J. Power Sour. (2014). https://doi.org/10.1016/j.jpowsour.2014.07.191

    Article  Google Scholar 

  23. Cheng, Y.-T., Verbrugge, M.W. : Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sour. (2009). https://doi.org/10.1016/j.jpowsour.2009.01.021

    Article  Google Scholar 

  24. Li, X., Fang, Q., Li, J., Hong, W., Liu, Y., Wen, P.: Diffusion-induced stress and strain energy affected by dislocation mechanisms in a cylindrical nanoanode. Solid State Ion. (2015). https://doi.org/10.1016/j.ssi.2015.08.016

    Article  Google Scholar 

  25. Zhang, X., Shyy, W., Sastrya, A.M.: Numerical simulation of intercalation-induced stress in li-ion battery electrode particles. J. Electrochem. Soc. (2007). https://doi.org/10.1149/1.2759840

    Article  Google Scholar 

  26. Song, Y., Shao, X., Guo, Z., Zhang, J.: Role of material properties and mechanical constraint on stress-assisted diffusion in plate electrodes of lithium ion batteries. J. Phys. D: Appl. Phys (2013). https://doi.org/10.1088/0022-3727/46/10/105307

    Article  Google Scholar 

  27. Crank, J.: The Mathematics of Diffusion. Oxford University, Oxford (1975)

    MATH  Google Scholar 

  28. Tanmay, K., Bhandakkar, H.G.: Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion-induced stresses. Int. J. Solids Struct. (2011). https://doi.org/10.1016/j.ijsolstr.2011.04.005

    Article  Google Scholar 

  29. Li, Y., Zhang, K., Zheng, B., Yang, F.: Effect of local deformation on the coupling between diffusion and stress in lithium-ion battery. Int. J. Solids Struct. (2016). https://doi.org/10.1016/j.ijsolstr.2016.02.029

    Article  Google Scholar 

  30. Guzmán, S., Gálvez, J.C., Sancho, J.M.: Modelling of chloride ingress into concrete through a single-ion approach. Application to an idealized surface crack pattern. Int. J. Numer. Anal. Meth. Geomech. (2014). https://doi.org/10.1002/nag.2273

    Article  Google Scholar 

  31. Anderson, T.L.: Fracture Mechanics Fundamentals and Applications-Third Edition. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  32. Tada, H., Paris, P.C., Irwin, G.R.: The Stress Analysis of Cracks Handbook. ASME Press, New York (2000)

    Book  Google Scholar 

  33. Wang, X., Fan, F., Wang, J., Wang, H., Tao, S., Yang, A., Liu, A., Chew, H.B., Mao, S.X., Zhu, T., Xia, S.: High damage tolerance of electrochemically lithiated silicon. Nat. Commun. (2015). https://doi.org/10.1038/ncomms9417

  34. Zhang, S., Zhao, K., Zhu, T., Ju, L.: Electrochemomechanical degradation of high-capacity battery electrode materials. Prog. Mater. Sci. (2017). https://doi.org/10.1016/j.pmatsci.2017.04.014

    Article  Google Scholar 

  35. Zhang, L., Song, Y., He, L., Ni, Y.: Variations of boundary reaction rate and particle size on the diffusion-induced stress in a phase separating electrode. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4897459

    Article  Google Scholar 

  36. Huang, S., Fan, F., Li, J., Zhang, S., Zhu, T.: Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta. Mater. (2013). https://doi.org/10.1016/j.actamat.2013.04.007

    Article  Google Scholar 

  37. Xie, Z., Ma, Z., Wang, Y., Zhou, Y., Chunsheng, L.: A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries. RSC Adv. (2016). https://doi.org/10.1039/c5ra27817a

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guizhou Provincial General Undergraduate Higher Education Technology Supporting Talent Support Program (KY(2018)043), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_0852), the National Natural Science Foundation of China (10502025, 10872087, 11272143), the Program for Chinese New Century Excellent Talents in university (NCET-12-0712), the Key University Science Research Project of Jiangsu Province (17KJA130002), as well as the Ph.D. programs Foundation of Ministry of Education of China (20133221110008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqiu Zhou or Rui Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 1.

Table 1 Material properties and operating parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, L., Xu, C., Chen, B. et al. Theoretical analysis of the mechanical behavior in Li–ion battery cylindrical electrodes with phase transformation. Acta Mech 231, 1045–1062 (2020). https://doi.org/10.1007/s00707-019-02589-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02589-3

Navigation